Non-canonical auxin signalling: fast and curious
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30854547
PubMed Central
PMC6506764
DOI
10.1093/jxb/erz111
PII: 5373062
Knihovny.cz E-zdroje
- Klíčová slova
- AUX/IAA transcriptional regulators, Arabidopsis, Auxin F-Box (AFB), Auxin Response Factors (ARFs), Transport Inhibitor Response 1 (TIR1), auxin, canonical auxin signalling pathway, indole-3-acetic acid (IAA), kinase, receptor, TIR1/AFB co-receptor, non-canonical auxin signalling pathway, ubiquitination,
- MeSH
- fyziologie rostlin * MeSH
- kyseliny indoloctové metabolismus MeSH
- signální transdukce fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
Zobrazit více v PubMed
Armengot L, Marquès-Bueno MM, Jaillais Y. 2016. Regulation of polar auxin transport by protein and lipid kinases. Journal of Experimental Botany 67, 4015–4037. PubMed PMC
Badescu GO, Napier RM. 2006. Receptors for auxin: will it all end in TIRs? Trends in Plant Science 11, 217–223. PubMed
Barbosa IC, Zourelidou M, Willige BC, Weller B, Schwechheimer C. 2014. D6 PROTEIN KINASE activates auxin transport-dependent growth and PIN-FORMED phosphorylation at the plasma membrane. Developmental Cell 29, 674–685. PubMed
Busi R, Goggin DE, Heap IM, et al. . 2018. Weed resistance to synthetic auxin herbicides. Pest Management Science 74, 2265–2276. PubMed PMC
Calderón Villalobos LI, Lee S, De Oliveira C, et al. . 2012. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nature Chemical Biology 8, 477–485. PubMed PMC
Chandler JW. 2016. Auxin response factors. Plant, Cell & Environment 39, 1014–1028. PubMed
Dai N, Wang W, Patterson SE, Bleecker AB. 2013. The TMK subfamily of receptor-like kinases in Arabidopsis display an essential role in growth and a reduced sensitivity to auxin. PLoS One 8, e60990. PubMed PMC
Dai X, Zhang Y, Zhang D, Chen J, Gao X, Estelle M, Zhao Y. 2015. Embryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent BSM gene. Nature Plants 1, 15183. PubMed PMC
Dhonukshe P, Huang F, Galvan-Ampudia CS, et al. . 2010. Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development 137, 3245–3255. PubMed
Dindas J, Scherzer S, Roelfsema MRG, et al. . 2018. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nature Communications 9, 1174. PubMed PMC
Dory M, Hatzimasoura E, Kállai BM, et al. . 2018. Coevolving MAPK and PID phosphosites indicate an ancient environmental control of PIN auxin transporters in land plants. FEBS Letters 592, 89–102. PubMed PMC
Echeverria PC, Picard D. 2010. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochimica et Biophysica Acta 1803, 641–649. PubMed
Enders TA, Frick EM, Strader LC. 2017. An Arabidopsis kinase cascade influences auxin-responsive cell expansion. The Plant Journal 92, 68–81. PubMed PMC
Fendrych M, Akhmanova M, Merrin J, Glanc M, Hagihara S, Takahashi K, Uchida N, Torii KU, Friml J. 2018. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nature Plants 4, 453–459. PubMed PMC
Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y. 2015. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proceedings of the National Academy of Sciences, USA 112, 2275–2280. PubMed PMC
Grossmann G, Meier M, Cartwright HN, Sosso D, Quake SR, Ehrhardt DW, Frommer WB. 2012. Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip. Journal of Visualized Experiments 65, 4290. PubMed PMC
Haga K, Frank L, Kimura T, Schwechheimer C, Sakai T. 2018. Roles of AGCVIII kinases in the hypocotyl phototropism of Arabidopsis Seedlings. Plant & Cell Physiology 59, 1060–1071. PubMed
Huang JB, Liu H, Chen M, et al. . 2014. ROP3 GTPase contributes to polar auxin transport and auxin responses and is important for embryogenesis and seedling growth in Arabidopsis. The Plant Cell 26, 3501–3518. PubMed PMC
Leyser O. 2018. Auxin signaling. Plant Physiology 176, 465–479. PubMed PMC
Marhava P, Bassukas AEL, Zourelidou M, et al. . 2018. A molecular rheostat adjusts auxin flux to promote root protophloem differentiation. Nature 558, 297–300. PubMed
Michalko J, Dravecká M, Bollenbach T, Friml J. 2015. Embryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM gene. F1000Research 4, 1104. PubMed PMC
Michniewicz M, Zago MK, Abas L, et al. . 2007. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130, 1044–1056. PubMed
Mutte SK, Kato H, Rothfels C, Melkonian M, Wong GK-S, Weijers D. 2018. Origin and evolution of the nuclear auxin response system. eLife 7, e33399. PubMed PMC
Quareshy M, Prusinska J, Li J, Napier R. 2018. A cheminformatics review of auxins as herbicides. Journal of Experimental Botany 69, 265–275. PubMed
Retzer K, Singh G, Napier RM. 2018. It starts with TIRs. Nature Plants 4, 410–411. PubMed
Roosjen M, Paque S, Weijers D. 2018. Auxin response factors: output control in auxin biology. Journal of Experimental Botany 69, 179–188. PubMed
Scherer GF. 2011. AUXIN-BINDING-PROTEIN1, the second auxin receptor: what is the significance of a two-receptor concept in plant signal transduction? Journal of Experimental Botany 62, 3339–3357. PubMed
Shih HW, DePew CL, Miller ND, Monshausen GB. 2015. The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana. Current Biology 25, 3119–3125. PubMed
Simonini S, Bencivenga S, Trick M, Østergaard L. 2017. Auxin-induced modulation of ETTIN activity orchestrates gene expression in Arabidopsis. The Plant Cell 29, 1864–1882. PubMed PMC
Simonini S, Deb J, Moubayidin L, Stephenson P, Valluru M, Freire-Rios A, Sorefan K, Weijers D, Friml J, Østergaard L. 2016. A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis. Genes & Development 30, 2286–2296. PubMed PMC
Simonini S, Mas PJ, Mas CMVS, Østergaard L, Hart DJ. 2018a Auxin sensing is a property of an unstructured domain in the Auxin Response Factor ETTIN of Arabidopsis thaliana. Scientific Reports 8, 13563. PubMed PMC
Simonini S, Stephenson P, Østergaard L. 2018b A molecular framework controlling style morphology in Brassicaceae. Development 145, dev158105. PubMed PMC
Uchida N, Takahashi K, Iwasaki R, et al. . 2018. Chemical hijacking of auxin signaling with an engineered auxin–TIR1 pair. Nature Chemical Biology 14, 299–305. PubMed PMC
von Wangenheim D, Hauschild R, Fendrych M, et al. . 2017. a Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife 6, e26792. PubMed PMC
von Wangenheim D, Hauschild R, Friml J. 2017b Light sheet fluorescence microscopy of plant roots growing on the surface of a gel. Journal of Visualized Experiments 119, e55044. PubMed PMC
Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M. 2016. HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nature Communications 7, 10269. PubMed PMC
Watanabe E, Mano S, Hara-Nishimura I, Nishimura M, Yamada K. 2017. HSP90 stabilizes auxin receptor TIR1 and ensures plasticity of auxin responses. Plant Signaling & Behavior 12, e1311439. PubMed PMC
Weijers D, Wagner D. 2016. Transcriptional responses to the auxin hormone. Annual Review of Plant Biology 67, 539–574. PubMed
Xu T, Dai N, Chen J, et al. . 2014. Cell surface ABP1–TMK auxin-sensing complex activates ROP GTPase signaling. Science 343, 1025–1028 PubMed PMC
Yu H, Zhang Y, Moss BL, Bargmann BO, Wang R, Prigge M, Nemhauser JL, Estelle M. 2015. Untethering the TIR1 auxin receptor from the SCF complex increases its stability and inhibits auxin response. Nature Plants 1, 14030. PubMed PMC
Auxin Metabolite Profiling in Isolated and Intact Plant Nuclei