Spin to orbital light momentum conversion visualized by particle trajectory
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
30858528
PubMed Central
PMC6411984
DOI
10.1038/s41598-019-40475-z
PII: 10.1038/s41598-019-40475-z
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In a tightly focused beam of light having both spin and orbital angular momentum, the beam exhibits the spin-orbit interaction phenomenon. We demonstrate here that this interaction gives rise to series of subtle, but observable, effects on the dynamics of a dielectric microsphere trapped in such a beam. In our setup, we control the strength of spin-orbit interaction with the width, polarization and vorticity of the beam and record how these parameters influence radius and orbiting frequency of the same single orbiting particle pushed by the laser beam. Using Richard and Wolf model of the non-paraxial beam focusing, we found a very good agreement between the experimental results and the theoretical model based on calculation of the optical forces using the generalized Lorenz-Mie theory extended to a non-paraxial vortex beam. Especially the radius of the particle orbit seems to be a promising parameter characterizing the spin to orbital momentum conversion independently on the trapping beam power.
Zobrazit více v PubMed
Ashkin, A. Optical trapping and manipulation of neutral particles using lasers (World Scientific, London, 2006). PubMed PMC
Jones, P. H., Maragò, O. M. & Volpe, G. Optical tweezers: principles and applications (Cambridge University Press).
Andrews, D. L. & Babiker, M. (eds) The angular momentum of light (Cambridge University Press, Cambridge, UK, 2013).
Allen L, Beijersbergen M, Spreeuw R, Woerdman J. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A. 1992;45:8185–8189. PubMed
Allen L, Padgett M, Babiker M. The orbital angular momentum of light. Progress in Optics. 1999;39:291–372.
Padgett M, Bowman R. Tweezers with a twist. Nat. Photon. 2011;5:343–348.
Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics. 2011;3:161–204.
Parkin S, et al. Optical torque on microscopic objects. Methods cell biology. 2007;82:525–561. PubMed
Simpson SH, Hanna S. Orbital motion of optically trapped particles in laguerre–gaussian beams. J. Opt. Soc. Am. A. 2010;27:2061–2071. PubMed
Nieminen, T. A. et al. Optical Vortex Trapping and the Dynamics of Particle Rotation. In David L. Andrews (Ed.), Structured Light and Its Applications: An introduction to Phase-Structured Beams and Nanoscale Optical Forces (United States: Academic Press (Elsevier Press), 2008).
He H, Friese M, Heckenberg N, Rubinsztein-Dunlop H. Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity. Phys. Rev. Lett. 1995;75:826–829. PubMed
Friese M, Enger J, RubinszteinDunlop H, Heckenberg N. Optical angular-momentum transfer to trapped absorbing particles. Phys. Rev. A. 1996;54:1593–1596. PubMed
Simpson NB, Dholakia K, Allen L, Padgett MJ. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett. 1997;22:52–54. PubMed
Volke-Sepúlveda K, Garcés-Chávez V, Chávez-Cerda S, Arlt J, Dholakia K. Orbital angular momentum of a high-order Bessel light beam. J. Opt. B: Quantum Semiclass. Opt. 2002;4:S82–S89.
Garcés-Chávez, V. et al. Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle. Phys. Rev. Lett. 91, 093602-1-4 (2003). PubMed
Curtis JE, Grier DG. Structure of Optical Vortices. Phys. Rev. Lett. 2003;90(133901):1–4. PubMed
Arzola A, Jákl P, Chvátal L, Zemánek P. Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles. Opt. Express. 2014;22:16207–16221. PubMed
Brzobohatý O, et al. Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap. Opt. Express. 2015;23:7273–7287. PubMed
Leach J, Mushfique H, di Leonardo R, Padgett M, Cooper J. An optically driven pump for microfluidics. Lab Chip. 2006;6:735–739. PubMed
Kelemen L, Valkai S, Ormos P. Integrated Optical Rotor. Appl. Opt. 2006;45:2777–2779. PubMed
Lin C-L, Vitrant G, Bouriau M, Casalegno R, Baldeck PL. Optically driven Archimedes micro-screws for micropump application. Opt. Express. 2011;19:8267–8276. PubMed
Neale SL, MacDonald MP, Dholakia K, Krauss TF. All-optical control of microfluidic components using form birefringence. Nat. Mater. 2005;4:530–533. PubMed
Ladavac K, Grier D. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt. Express. 2004;12:1144–1149. PubMed
Cheng Z, Mason T. Rotational diffusion microrheology. Phys. Rev. Lett. 2003;90:018304. PubMed
Bishop A, Nieminen T, Heckenberg N, Rubinsztein-Dunlop H. Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett. 2004;92:198104. PubMed
Di Leonardo R, et al. Multipoint holographic optical velocimetry in microfluidic systems. Phys. Rev. Lett. 2006;96:134502. PubMed
Arita Y, McKinley AW, Mazilu M, Rubinsztein-Dunlop H, Dholakia K. Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle. Anal. Chem. 2011;83:8855–8858. PubMed
Wu T, et al. A photon-driven micromotor can direct nerve fibre growth. Nat. Photon. 2011;6:62–67.
Rohrbach A, Tischer C, Neumayer D, Florin E-L, Stelzer EHK. Trapping and tracking a local probe with a photonic force microscope. Rev. Sci. Instrum. 2004;75:2197–2210.
Bishop A, Nieminen T, Heckenberg N, Rubinsztein-Dunlop H. Optical application and measurement of torque on microparticles of isotropic nonabsorbing material. Phys. Rev. A. 2003;68:033802.
Oroszi L, Galajda P, Kirei H, Bottka S, Ormos P. Direct measurement of torque in an optical trap and its application to double-strand DNA. Phys. Rev. Lett. 2006;97:058301. PubMed
Gutierrez-Medina B, Andreasson JO, Greenleaf WJ, LaPorta A, Block SM. An optical apparatus for rotation and trapping. Methods Enzymol. 2010;475:377–404. PubMed PMC
Zhao Y, Edgar JS, Jeffries GDM, McGloin D, Chiu DT. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 2007;99:073901. PubMed
Bliokh KY, Alonso MA, Ostrovskaya EA, Aiello A. Angular momenta and spin-orbit interaction of nonparaxial light in free space. Phys. Rev. A. 2010;82(063825):1–7.
Bliokh KY, et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt. Express. 2011;19:26132–26149. PubMed
He H, Heckenberg N, Rubinsztein-Dunlop H. Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms. J. Mod. Opt. 1995;42:217–223.
Čižmár T, Mazilu M, Dholakia K. In situ wavefront correction and its application to micromanipulation. Nat. Photon. 2010;4:388–394.
Čižmár T, Brzobohatý O, Dholakia K, Zemánek P. The holographic optical micro-manipulation system based on counter-propagating beams. Laser Phys. Lett. 2011;8:50–56.
Franklin, S. V. & Shattuck, M. D. (eds) Handbook of granular materials (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2015).
Šiler M, Zemánek P. Optical forces in a non-diffracting vortex beam. J. Quant. Spectrosc. Radiat. Transf. 2013;126:78–83.
Šiler M, Jákl P, Brzobohatý O, Zemánek P. Optical forces induced behavior of a particle in a non-diffracting vortex beam. Opt. Express. 2012;20:24304–24319. PubMed
Fitzgibbon AW, Pilu M, Fisher RB. Direct least-squares fitting of ellipses. IEEE Transactions on Pattern Analysis Mach. Intell. 1999;21:476–480.
Kasa, I. A cicrcle fitting procedure and its error analysis. IEEE Transactions on Intrumentation Meas. 8–14 (1976).
Chen M, Mazilu M, Arita Y, Wright E, Dholakia K. Dynamics of microparticles trapped in a perfect vortex beam. Opt. Lett. 2013;38:4919–4922. PubMed