Using Lung Organoids to Investigate Epithelial Barrier Complexity and IL-17 Signaling During Respiratory Infection

. 2019 ; 10 () : 323. [epub] 20190228

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30873173

Zobrazit více v PubMed

Dickson RP. The microbiome and critical illness. Lancet Respir Med. (2016) 4:59–72. 10.1016/S2213-2600(15)00427-0 PubMed DOI PMC

Zscheppang K, Berg J, Hedtrich S, Verheyen L, Wagner DE, Suttorp N, et al. . Human pulmonary 3D models for translational research. Biotechnol J. (2018) 13:1700341. 10.1002/biot.201700341 PubMed DOI PMC

Moffatt MF, Cookson WO. The lung microbiome in health and disease. Clin Med. (2017) 17:525–9. 10.7861/clinmedicine.17-6-525 PubMed DOI PMC

Pavia AT. Viral infections of the lower respiratory tract: old viruses, new viruses, and the role of diagnosis. Clin Infect Dis. (2011) 52(Suppl. 4):S284–9. 10.1093/cid/cir043 PubMed DOI PMC

de Benedictis FM, Bush A. Recurrent lower respiratory tract infections in children. BMJ. (2018) 362:k2698. 10.1136/bmj.k2698 PubMed DOI

Hijano DR, Maron G, Hayden RT. Respiratory viral infections in patients with cancer or undergoing hematopoietic cell transplant. Front Microbiol. (2018) 9:3097 10.3389/fmicb.2018.03097 PubMed DOI PMC

Nemecek JC, Wüthrich M, Klein BS. Global control of dimorphism and virulence in fungi. Science. (2006) 312:583–8. 10.1126/science.1124105 PubMed DOI

Reddy KS. Global burden of disease study 2015 provides GPS for global health 2030. Lancet. (2016) 388:1448–9. 10.1016/S0140-6736(16)31743-3 PubMed DOI

Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol. (2015) 16:27–35. 10.1038/ni.3045 PubMed DOI PMC

Hauber HP, Tulic MK, Tsicopoulos A, Wallaert B, Olivenstein R, Daigneault P, et al. . Toll-like receptors 4 and 2 expression in the bronchial mucosa of patients with cystic fibrosis. Can Respir J. (2005) 12:13–8. 10.1155/2005/648984 PubMed DOI

Muir A, Soong G, Sokol S, Reddy B, Gomez MI, Van Heeckeren A, et al. . Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am J Respir Cell Mol Biol. (2004) 30:777–83. 10.1165/rcmb.2003-0329OC PubMed DOI

Sha Q, Truong-Tran AQ, Plitt JR, Beck LA, Schleimer RP. Activation of airway epithelial cells by toll-like receptor agonists. Am J Respir Cell Mol Biol. (2004) 31:358–64. 10.1165/rcmb.2003-0388OC PubMed DOI

Armstrong L, Medford AR, Uppington KM, Robertson J, Witherden IR, Tetley TD, et al. . Expression of functional toll-like receptor-2 and−4 on alveolar epithelial cells. Am J Respir Cell Mol Biol. (2004) 31:241–5. 10.1165/rcmb.2004-0078OC PubMed DOI

Ritter M, Mennerich D, Weith A, Seither P. Characterization of Toll-like receptors in primary lung epithelial cells: strong impact of the TLR3 ligand poly(I:C) on the regulation of Toll-like receptors, adaptor proteins and inflammatory response. J Inflamm. (2005) 2:16. 10.1186/1476-9255-2-16 PubMed DOI PMC

Cheung MB, Sampayo-Escobar V, Green R, Moore ML, Mohapatra S, Mohapatra SS. Respiratory syncytial virus-infected mesenchymal stem cells regulate immunity via interferon beta and indoleamine-2,3-Dioxygenase. PloS One. (2016) 11:e0163709. 10.1371/journal.pone.0163709 PubMed DOI PMC

Zhou P, Liu Z, Li X, Zhang B, Wang X, Lan J, et al. . Migration ability and Toll-like receptor expression of human mesenchymal stem cells improves significantly after three-dimensional culture. Biochem Biophys Res Commun. (2017) 491:323–8. 10.1016/j.bbrc.2017.07.102 PubMed DOI

Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, et al. . Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA. (2009) 106:12771–5. 10.1073/pnas.0906850106 PubMed DOI PMC

Lee JH, Bhang DH, Beede A, Huang TL, Stripp BR, Bloch KD, et al. . Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell. (2014) 156:440–55. 10.1016/j.cell.2013.12.039 PubMed DOI PMC

Rawlins EL, Ostrowski LE, Randell SH, Hogan BL. Lung development and repair: contribution of the ciliated lineage. Proc Natl Acad Sci USA. (2007) 104:410–7. 10.1073/pnas.0610770104 PubMed DOI PMC

Kesimer M, Kirkham S, Pickles RJ, Henderson AG, Alexis NE, Demaria G, et al. . Tracheobronchial air-liquid interface cell culture: a model for innate mucosal defense of the upper airways? Am J Physiol Lung Cell Mol Physiol. (2009) 296:L92–100. 10.1152/ajplung.90388.2008 PubMed DOI PMC

Lee MK, Yoo JW, Lin H, Kim YS, Kim DD, Choi YM, et al. . Air-liquid interface culture of serially passaged human nasal epithelial cell monolayer for in vitro drug transport studies. Drug Deliv. (2005) 12:305–11. 10.1080/10717540500177009 PubMed DOI

Prytherch Z, Job C, Marshall H, Oreffo V, Foster M, BéruBé K. Tissue-specific stem cell differentiation in an in vitro airway model. Macromol Biosci. (2011) 11:1467–77. 10.1002/mabi.201100181 PubMed DOI

Walters MS, Gomi K, Ashbridge B, Moore MA, Arbelaez V, Heldrich J, et al. . Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity. Respir Res. (2013) 14:135. 10.1186/1465-9921-14-135 PubMed DOI PMC

Hackett NR, Shaykhiev R, Walters MS, Wang R, Zwick RK, Ferris B, et al. . The human airway epithelial basal cell transcriptome. PLoS ONE. (2011) 6:e18378. 10.1371/journal.pone.0018378 PubMed DOI PMC

Persson BD, Jaffe AB, Fearns R, Danahay H. Respiratory syncytial virus can infect basal cells and alter human airway epithelial differentiation. PLoS ONE. (2014) 9:e102368. 10.1371/journal.pone.0102368 PubMed DOI PMC

Whitcutt MJ, Adler KB, Wu R. A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells. Vitro Cell Dev Biol. (1988) 24:420–8. 10.1007/BF02628493 PubMed DOI

Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, et al. . A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med. (2012) 4:159ra147. 10.1126/scitranslmed.3004249 PubMed DOI PMC

Huh DD. A human breathing lung-on-a-chip. Ann Am Thorac Soc. (2015) 12(Suppl. 1):S42–44. 10.1513/AnnalsATS.201410-442MG PubMed DOI PMC

Huang SX, Islam MN, O'Neill J, Hu Z, Yang YG, Chen YW, et al. . Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol. (2014) 32:84–91. 10.1038/nbt.2754 PubMed DOI PMC

Pollard BS, Pollard HB. Induced pluripotent stem cells for treating cystic fibrosis: State of the science. Pediatr Pulmonol. (2018) 53:S12–29. 10.1002/ppul.24118 PubMed DOI

Chen YW, Huang SX, de Carvalho ALRT, Ho SH, Islam MN, Volpi S, et al. . A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol. (2017) 19:542–9. 10.1038/ncb3510 PubMed DOI PMC

Dye BR, Hill DR, Ferguson MA, Tsai YH, Nagy MS, Dyal R, et al. . in vitro generation of human pluripotent stem cell derived lung organoids. Elife. (2015) 4:e05098. 10.7554/eLife.05098 PubMed DOI PMC

Dye BR, Dedhia PH, Miller AJ, Nagy MS, White ES, Shea LD, et al. . A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. Elife. (2016) 5:e19732. 10.7554/eLife.19732 PubMed DOI PMC

Bertaux-Skeirik N, Feng R, Schumacher MA, Li J, Mahe MM, Engevik AC, et al. . CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog. (2015) 11:e1004663. 10.1371/journal.ppat.1004663 PubMed DOI PMC

Williamson IA, Arnold JW, Samsa LA, Gaynor L, DiSalvo M, Cocchiaro JL, et al. . A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology. Cell Mol Gastroenterol Hepatol. (2018) 6:301–19. 10.1016/j.jcmgh.2018.05.004 PubMed DOI PMC

Bartfeld S. Modeling infectious diseases and host-microbe interactions in gastrointestinal organoids. Dev Biol. (2016) 420:262–70. 10.1016/j.ydbio.2016.09.014 PubMed DOI

Quantius J, Schmoldt C, Vazquez-Armendariz AI, Becker C, El Agha E, Wilhelm J, et al. . Influenza virus infects epithelial stem/progenitor cells of the distal lung: impact on Fgfr2b-driven epithelial repair. PLoS Pathog. (2016) 12:e1005544. 10.1371/journal.ppat.1005544 PubMed DOI PMC

Shen Y, Chen L, Wang M, Lin D, Liang Z, Song P, et al. . Flagellar hooks and hook protein FlgE participate in host microbe interactions at immunological level. Sci Rep. (2017) 7:1433. 10.1038/s41598-017-01619-1 PubMed DOI PMC

Heo I, Dutta D, Schaefer DA, Iakobachvili N, Artegiani B, Sachs N, et al. . Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nat Microbiol. (2018) 3:814–23. 10.1038/s41564-018-0177-8 PubMed DOI PMC

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. (2006) 126:663–76. 10.1016/j.cell.2006.07.024 PubMed DOI

Ikpa PT, Bijvelds MJ, de Jonge HR. Cystic fibrosis: toward personalized therapies. Int J Biochem Cell Biol. (2014) 52:192–200. 10.1016/j.biocel.2014.02.008 PubMed DOI

Mou H, Zhao R, Sherwood R, Ahfeldt T, Lapey A, Wain J, et al. . Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell. (2012) 10:385–97. 10.1016/j.stem.2012.01.018 PubMed DOI PMC

Wong AP, Bear CE, Chin S, Pasceri P, Thompson TO, Huan LJ, et al. . Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat Biotechnol. (2012) 30:876–82. 10.1038/nbt.2328 PubMed DOI PMC

Hernández-Santos N, Wiesner DL, Fites JS, McDermott AJ, Warner T, Wüthrich M, et al. . Lung epithelial cells coordinate innate lymphocytes and immunity against pulmonary fungal infection. Cell Host Microbe. (2018) 23:511–22 e515. 10.1016/j.chom.2018.02.011 PubMed DOI PMC

De Luca A, Pariano M, Cellini B, Costantini C, Villella VR, Jose SS, et al. The IL-17F/IL-17RC axis promotes respiratory allergy in the proximal airways. Cell Rep. (2017) 20:1667–80. 10.1016/j.celrep.2017.07.063 PubMed DOI

Chen K, Eddens T, Trevejo-Nunez G, Way EE, Elsegeiny W, Ricks DM, et al. . IL-17 Receptor signaling in the lung epithelium is required for mucosal chemokine gradients and pulmonary host defense against K. pneumoniae. Cell Host Microbe. (2016) 20:596–605. 10.1016/j.chom.2016.10.003 PubMed DOI PMC

Aggarwal S, Gurney AL. IL-17: prototype member of an emerging cytokine family. J Leukoc Biol. (2002) 71:1–8. 10.1189/jlb.71.1.1 PubMed DOI

Ely LK, Fischer S, Garcia KC. Structural basis of receptor sharing by interleukin 17 cytokines. Nat Immunol. (2009) 10:1245–51. 10.1038/ni.1813 PubMed DOI PMC

Toy D, Kugler D, Wolfson M, Vanden Bos T, Gurgel J, Derry J, et al. . Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol. (2006) 177:36–9. 10.4049/jimmunol.177.1.36 PubMed DOI

Goepfert A, Lehmann S, Wirth E, Rondeau JM. The human IL-17A/F heterodimer: a two-faced cytokine with unique receptor recognition properties. Sci Rep. (2017) 7:8906. 10.1038/s41598-017-08360-9 PubMed DOI PMC

Tsai HC, Velichko S, Hung LY, Wu R. IL-17A and Th17 cells in lung inflammation: an update on the role of Th17 cell differentiation and IL-17R signaling in host defense against infection. Clin Dev Immunol. (2013) 2013:267971. 10.1155/2013/267971 PubMed DOI PMC

Ling Y, Cypowyj S, Aytekin C, Galicchio M, Camcioglu Y, Nepesov S, et al. . Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med. (2015) 212:619–31. 10.1084/jem.20141065 PubMed DOI PMC

Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, et al. . Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. (2011) 332:65–8. 10.1126/science.1200439 PubMed DOI PMC

Ota K, Kawaguchi M, Matsukura S, Kurokawa M, Kokubu F, Fujita J, et al. . Potential involvement of IL-17F in asthma. J Immunol Res. (2014) 2014:602846. 10.1155/2014/602846 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...