Estimating Constraints for Protection Factors from HDX-MS Data
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
096686/Z/11/Z
Wellcome Trust - United Kingdom
PubMed
30885379
PubMed Central
PMC6451051
DOI
10.1016/j.bpj.2019.02.024
PII: S0006-3495(19)30165-1
Knihovny.cz E-zdroje
- MeSH
- amidy chemie MeSH
- deuterium chemie MeSH
- hmotnostní spektrometrie metody normy MeSH
- komplement C3 chemie MeSH
- peptidy chemie MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amidy MeSH
- deuterium MeSH
- komplement C3 MeSH
- peptidy MeSH
Hydrogen/deuterium exchange monitored by mass spectrometry is a promising technique for rapidly fingerprinting structural and dynamical properties of proteins. The time-dependent change in the mass of any fragment of the polypeptide chain depends uniquely on the rate of exchange of its amide hydrogens, but determining the latter from the former is generally not possible. Here, we show that, if time-resolved measurements are available for a number of overlapping peptides that cover the whole sequence, rate constants for each amide hydrogen exchange (or equivalently, their protection factors) may be extracted and the uniqueness of the solutions obtained depending on the degree of peptide overlap. However, in most cases, the solution is not unique, and multiple alternatives must be considered. We provide a statistical method that clusters the solutions to further reduce their number. Such analysis always provides meaningful constraints on protection factors and can be used in situations in which obtaining more refined experimental data is impractical. It also provides a systematic way to improve data collection strategies to obtain unambiguous information at single-residue level (e.g., for assessing protein structure predictions at atomistic level).
Zobrazit více v PubMed
Linderstrom-Lang K. The pH-dependence of the deuterium exchange of insulin. Biochim. Biophys. Acta. 1955;18:308. PubMed
Clarke J., Fersht A.R. An evaluation of the use of hydrogen exchange at equilibrium to probe intermediates on the protein folding pathway. Fold. Des. 1996;1:243–254. PubMed
Krishna M.M., Hoang L., Englander S.W. Hydrogen exchange methods to study protein folding. Methods. 2004;34:51–64. PubMed
Morozova L.A., Haynie D.T., Dobson C.M. Structural basis of the stability of a lysozyme molten globule. Nat. Struct. Biol. 1995;2:871–875. PubMed
Vendruscolo M., Paci E., Karplus M. Rare fluctuations of native proteins sampled by equilibrium hydrogen exchange. J. Am. Chem. Soc. 2003;125:15686–15687. PubMed
Dempsey C.E. Hydrogen exchange in peptides and proteins using NMR spectroscopy. Prog. Nucl. Mag. Res. Sp. 2001;39:135–170.
Zhang Z., Smith D.L. Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci. 1993;2:522–531. PubMed PMC
Katta V., Chait B.T. Hydrogen/deuterium exchange electrospray ionization mass spectrometry: a method for probing protein conformational changes in solution. J. Am. Chem. Soc. 1993;115:6317–6321.
Englander J.J., Del Mar C., Woods V.L., Jr. Protein structure change studied by hydrogen-deuterium exchange, functional labeling, and mass spectrometry. Proc. Natl. Acad. Sci. USA. 2003;100:7057–7062. PubMed PMC
Konermann L., Pan J., Liu Y.H. Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 2011;40:1224–1234. PubMed
Lam T.T., Lanman J.K., Prevelige P.E. Mapping of protein:protein contact surfaces by hydrogen/deuterium exchange, followed by on-line high-performance liquid chromatography-electrospray ionization Fourier-transform ion-cyclotron-resonance mass analysis. J. Chromatogr. A. 2002;982:85–95. PubMed
Kan Z.Y., Mayne L., Englander S.W. ExMS: data analysis for HX-MS experiments. J. Am. Soc. Mass Spectrom. 2011;22:1906–1915. PubMed PMC
Suchanova B., Tuma R. Folding and assembly of large macromolecular complexes monitored by hydrogen-deuterium exchange and mass spectrometry. Microb. Cell Fact. 2008;7:12. PubMed PMC
Clarke J., Itzhaki L.S., Fersht A.R. Hydrogen exchange at equilibrium: a short cut for analysing protein-folding pathways? Trends Biochem. Sci. 1997;22:284–287. PubMed
Lísal J., Kainov D.E., Tuma R. Interaction of packaging motor with the polymerase complex of dsRNA bacteriophage. Virology. 2006;351:73–79. PubMed
Lísal J., Lam T.T., Tuma R. Functional visualization of viral molecular motor by hydrogen-deuterium exchange reveals transient states. Nat. Struct. Mol. Biol. 2005;12:460–466. PubMed
Rand K.D., Adams C.M., Jørgensen T.J. Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens. J. Am. Chem. Soc. 2008;130:1341–1349. PubMed
Rand K.D. Pinpointing changes in higher-order protein structure by hydrogen/deuterium exchange coupled to electron transfer dissociation mass spectrometry. Int. J. Mass Spectrom. 2013;338:2–10.
Huang R.Y., Garai K., Gross M.L. Hydrogen/deuterium exchange and electron-transfer dissociation mass spectrometry determine the interface and dynamics of apolipoprotein E oligomerization. Biochemistry. 2011;50:9273–9282. PubMed PMC
Rand K.D., Zehl M., Jørgensen T.J. Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry. Anal. Chem. 2009;81:5577–5584. PubMed
Rand K.D., Zehl M., Jørgensen T.J. Loss of ammonia during electron-transfer dissociation of deuterated peptides as an inherent gauge of gas-phase hydrogen scrambling. Anal. Chem. 2010;82:9755–9762. PubMed
Kan Z.Y., Walters B.T., Englander S.W. Protein hydrogen exchange at residue resolution by proteolytic fragmentation mass spectrometry analysis. Proc. Natl. Acad. Sci. USA. 2013;110:16438–16443. PubMed PMC
Hamuro Y. Determination of equine cytochrome c backbone amide hydrogen/deuterium exchange rates by mass spectrometry using a wider time window and isotope envelope. J. Am. Soc. Mass Spectrom. 2017;28:486–497. PubMed
Hamuro Y., S. Y E. Determination of backbone amide hydrogen exchange rates of cytochrome c using partially scrambled electron transfer dissociation data. J. Am. Soc. Mass Spectrom. 2018;29:989–1001. PubMed
Gessner C., Steinchen W., Pantazatos D.P. Computational method allowing hydrogen-deuterium exchange mass spectrometry at single amide resolution. Sci. Rep. 2017;7:3789. PubMed PMC
Saltzberg D.J., Broughton H.B., Sali A. A residue-resolved bayesian approach to quantitative interpretation of hydrogen-deuterium exchange from mass spectrometry: application to characterizing protein-ligand interactions. J. Phys. Chem. B. 2017;121:3493–3501. PubMed PMC
Bai Y., Milne J.S., Englander S.W. Primary structure effects on peptide group hydrogen exchange. Proteins. 1993;17:75–86. PubMed PMC
Englander S.W., Sosnick T.R., Mayne L. Mechanisms and uses of hydrogen exchange. Curr. Opin. Struct. Biol. 1996;6:18–23. PubMed PMC
Milne J.S., Mayne L., Englander S.W. Determinants of protein hydrogen exchange studied in equine cytochrome c. Protein Sci. 1998;7:739–745. PubMed PMC
Nguyen D., Mayne L., Walter Englander S. Reference parameters for protein hydrogen exchange rates. J. Am. Soc. Mass Spectrom. 2018;29:1936–1939. PubMed PMC
Jones, E., O. Travis, and P. Peterson. 2001. SciPy: open source scientific tools for Python. http://www.scipy.org/.
Fraley C., Raftery A.E. Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 2002;97:611–631.
Scrucca L., Fop M., Raftery A.E. Mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J. 2016;8:289–317. PubMed PMC
Hammel M., Sfyroera G., Geisbrecht B.V. A structural basis for complement inhibition by Staphylococcus aureus. Nat. Immunol. 2007;8:430–437. PubMed
Devaurs D., Antunes D.A., Kavraki L.E. Coarse-grained conformational sampling of protein structure improves the fit to experimental hydrogen-exchange data. Front. Mol. Biosci. 2017;4:13. PubMed PMC
Althaus E., Canzar S., Zhang H.M. Computing H/D-exchange rates of single residues from data of proteolytic fragments. BMC Bioinformatics. 2010;11:424. PubMed PMC
Skinner J.J., Lim W.K., Englander S.W. Protein dynamics viewed by hydrogen exchange. Protein Sci. 2012;21:996–1005. PubMed PMC
Hilser V.J., Freire E. Structure-based calculation of the equilibrium folding pathway of proteins. Correlation with hydrogen exchange protection factors. J. Mol. Biol. 1996;262:756–772. PubMed
Liu T., Pantazatos D., Woods V.L., Jr. Quantitative assessment of protein structural models by comparison of H/D exchange MS data with exchange behavior accurately predicted by DXCOREX. J. Am. Soc. Mass Spectrom. 2012;23:43–56. PubMed PMC
Petruk A.A., Defelipe L.A., Turjanski A.G. Molecular dynamics simulations provide atomistic insight into hydrogen exchange mass spectrometry experiments. J. Chem. Theory Comput. 2013;9:658–669. PubMed
Best R.B., Vendruscolo M. Structural interpretation of hydrogen exchange protection factors in proteins: characterization of the native state fluctuations of CI2. Structure. 2006;14:97–106. PubMed
Radou G., Dreyer F.N., Paci E. Functional dynamics of hexameric helicase probed by hydrogen exchange and simulation. Biophys. J. 2014;107:983–990. PubMed PMC