The Effect of Rhodamine-Derived Superparamagnetic Maghemite Nanoparticles on the Motility of Human Mesenchymal Stem Cells and Mouse Embryonic Fibroblast Cells

. 2019 Mar 27 ; 24 (7) : . [epub] 20190327

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30934664

Nanoparticles have become popular in life sciences in the last few years. They have been produced in many variants and have recently been used in both biological experiments and in clinical applications. Due to concerns over nanomaterial risks, there has been a dramatic increase in investigations focused on safety research. The aim of this paper is to present the advanced testing of rhodamine-derived superparamagnetic maghemite nanoparticles (SAMN-R), which are used for their nontoxicity, biocompatibility, biodegradability, and magnetic properties. Recent results were expanded upon from the basic cytotoxic tests to evaluate cell proliferation and migration potential. Two cell types were used for the cell proliferation and tracking study: mouse embryonic fibroblast cells (3T3) and human mesenchymal stem cells (hMSCs). Advanced microscopic methods allowed for the precise quantification of the function of both cell types. This study has demonstrated that a dose of nanoparticles lower than 20 µg·cm-2 per area of the dish does not negatively affect the cells' morphology, migration, cytoskeletal function, proliferation, potential for wound healing, and single-cell migration in comparison to standard CellTracker™ Green CMFDA (5-chloromethylfluorescein diacetate). A higher dose of nanoparticles could be a potential risk for cytoskeletal folding and detachment of the cells from the solid extracellular matrix.

Zobrazit více v PubMed

Ramaswamy S., Greco J.B., Uluer M.C., Zhang Z., Zhang Z., Fishbein K.W., Spencer R.G. Magnetic Resonance Imaging of Chondrocytes Labeled with Superparamagnetic Iron Oxide Nanoparticles in Tissue-Engineered Cartilage. Tissue Eng. Part A. 2009;15:3899–3910. doi: 10.1089/ten.tea.2008.0677. PubMed DOI PMC

Sun J., Zhou S., Hou P., Yang Y., Weng J., Li X., Li M. Synthesis and Characterization of Biocompatible Fe3O4 Nanoparticles. J. Biomed. Mater. Res. Part A. 2007;80A:333–341. doi: 10.1002/jbm.a.30909. PubMed DOI

Kyrtatos P.G., Lehtolainen P., Junemann-Ramirez M., Garcia-Prieto A., Price A.N., Martin J.F., Gadian D.G., Pankhurst Q.A., Lythgoe M.F. Magnetic Tagging increases Delivery of Circulating Progenitors in Vascular injury. JACC: Cardiovasc. Interv. 2009;2:794–802. doi: 10.1016/j.jcin.2009.05.014. PubMed DOI

Ito A., Hibino E., Kobayashi C., Terasaki H., Kagami H., Ueda M., Kobayashi T., Honda H. Construction and Delivery of Tissue-Engineered Human Retinal Pigment Epithelial Cell Sheets, Using Magnetite Nanoparticles and Magnetic Force. Tissue Eng. 2005;11:489–496. doi: 10.1089/ten.2005.11.489. PubMed DOI

Scherer F., Anton M., Schillinger U., Henke J., Bergemann C., Krüger A., Gänsbacher B., Plank C. Magnetofection: Enhancing and Targeting Gene Delivery by Magnetic Force in vitro and in vivo. Gene Ther. 2002;9:102–109. doi: 10.1038/sj.gt.3301624. PubMed DOI

Reddy L.H., Arias J.L., Nicolas J., Couvreur P. Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chem. Rev. 2012;112:5818–5878. doi: 10.1021/cr300068p. PubMed DOI

Cmiel V., Skopalik J., Polakova K., Solar J., Havrdova M., Milde D., Justan I., Magro M., Starcuk Z., Provaznik I. Rhodamine Bound Maghemite As A Long-Term Dual Imaging Nanoprobe of Adipose Tissue-Derived Mesenchymal Stromal Cells. Eur. Biophys. J. 2017;46:433–444. doi: 10.1007/s00249-016-1187-1. PubMed DOI

Skopalik J., Polakova K., Havrdova M., Justan I., Magro M., Milde D., Knopfova L., Smarda J., Polakova H., Gabrielova E., et al. Mesenchymal Stromal Cell Labeling by New Uncoated Superparamagnetic Maghemite Nanoparticles in Comparison with Commercial Resovist—An initial in vitro Study. Int. J. Nanomed. 2014;2014:5355–5372. doi: 10.2147/IJN.S66986. PubMed DOI PMC

Kong B., Seog J.H., Graham L.M., Lee S.B. Experimental Considerations on the Cytotoxicity of Nanoparticles. Nanomedicine. 2011;6:929–941. doi: 10.2217/nnm.11.77. PubMed DOI PMC

Dai X., Liu J., Zheng H., Wichmann J., Hopfner U., Sudhop S., Prein C., Shen Y., Machens H.-G., Schilling A.F. Nano-Formulated Curcumin Accelerates Acute Wound Healing Through Dkk-1-Mediated Fibroblast Mobilization and Mcp-1-Mediated Anti-inflammation. NPG Asia Mater. 2017;9:e368. doi: 10.1038/am.2017.31. DOI

Haubner F., Muschter D., Pohl F., Schreml S., Prantl L., Gassner H. A Co-Culture Model of Fibroblasts and Adipose Tissue-Derived Stem Cells Reveals New insights into Impaired Wound Healing After Radiotherapy. Int. J. Mol. Sci. 2015;16:25947–25958. doi: 10.3390/ijms161125935. PubMed DOI PMC

Magro M., Sinigaglia G., Nodari L., Tucek J., Polakova K., Marusak Z., Cardillo S., Salviulo G., Russo U., Stevanato R., et al. Charge Binding of Rhodamine Derivative TO Oh−Stabilized Nanomaghemite: Universal Nanocarrier For Construction of Magnetofluorescent Biosensors. Acta Biomater. 2012;8:2068–2076. doi: 10.1016/j.actbio.2012.02.005. PubMed DOI

Ettinger A., Wittmann T. Quantitative Imaging in Cell Biology. Elsevier; Amsterdam, The Netherlands: 2014. Fluorescence Live Cell Imaging; pp. 77–94. Methods in Cell Biology. PubMed PMC

Jensen E.C. Use of Fluorescent Probes: Their Effect on Cell Biology and Limitations. Anat. Record. 2012;295:2031–2036. doi: 10.1002/ar.22602. PubMed DOI

Kramer N., Walzl A., Unger C., Rosner M., Krupitza G., Hengstschläger M., Dolznig H. in vitro Cell Migration and invasion Assays. Mutat. Res./Rev. Mutat. Res. 2013;752:10–24. doi: 10.1016/j.mrrev.2012.08.001. PubMed DOI

Fronza M., Heinzmann B., Hamburger M., Laufer S., Merfort I. Determination of the Wound Healing Effect of Calendula Extracts Using the Scratch Assay With 3T3 Fibroblasts. J. Ethnopharmacol. 2009;126:463–467. doi: 10.1016/j.jep.2009.09.014. PubMed DOI

Yeom C.-H., Lee G., Park J.-H., Yu J., Park S., Yi S.-Y., Lee H., Hong Y., Yang J., Lee S. High Dose Concentration Administration of Ascorbic Acid inhibits Tumor Growth in Balb/c Mice Implanted with Sarcoma 180 Cancer Cells Via the Restriction of Angiogenesis. J. Transl. Med. 2009;7:1–9. doi: 10.1186/1479-5876-7-70. PubMed DOI PMC

Liu Q., Xu Y., Wei S., Gao W., Chen L., Zhou T., Wang Z., Ying M., Zheng Q. Mirna-148B Suppresses Hepatic Cancer Stem Cell by Targeting Neuropilin-1. Biosci. Rep. 2015;35:e00229. doi: 10.1042/BSR20150084. PubMed DOI PMC

Liang C.-C., Park A.Y., Guan J.-L. in vitro Scratch Assay: A Convenient and inexpensive Method for Analysis of Cell Migration in vitro. Nat. Protoc. 2007;2:329–333. doi: 10.1038/nprot.2007.30. PubMed DOI

De Pascalis C., Etienne-Manneville S., Weaver V.M. Single and Collective Cell Migration: the Mechanics of Adhesions. Mol. Biol. Cell. 2017;28:1833–1846. doi: 10.1091/mbc.e17-03-0134. PubMed DOI PMC

Lintz M., Muñoz A., Reinhart-King C.A. the Mechanics of Single Cell and Collective Migration of Tumor Cells. J. Biomech. Eng. 2017;139:1–9. doi: 10.1115/1.4035121. PubMed DOI PMC

Jin C.-Y., Zhu B.-S., Wang X.-F., Lu Q.-H. Cytotoxicity of Titanium Dioxide Nanoparticles in Mouse Fibroblast Cells. Chem. Res. Toxicol. 2008;21:1871–1877. doi: 10.1021/tx800179f. PubMed DOI

Coradeghini R., Gioria S., García C.P., Nativo P., Franchini F., Gilliland D., Ponti J., Rossi F. Size-Dependent Toxicity and Cell interaction Mechanisms of Gold Nanoparticles on Mouse Fibroblasts. Toxicol. Lett. 2013;217:205–216. doi: 10.1016/j.toxlet.2012.11.022. PubMed DOI

Vikesland P.J., Rebodos R.L., Bottero J.Y., Rose J., Masion A. Aggregation and Sedimentation of Magnetite Nanoparticle Clusters. Environ. Sci. Nano. 2016;3:567–577. doi: 10.1039/C5EN00155B. DOI

Pernodet N., Fang X., Sun Y., Bakhtina A., Ramakrishnan A., Sokolov J., Ulman A., Rafailovich M. Adverse Effects of Citrate/gold Nanoparticles on Human Dermal Fibroblasts. Small. 2006;2:766–773. doi: 10.1002/smll.200500492. PubMed DOI

Berry C.C., Wells S., Charles S., Aitchison G., Curtis A.S.G. Cell Response to Dextran-Derivatised Iron Oxide Nanoparticles Post internalisation. Biomaterials. 2004;25:5405–5413. doi: 10.1016/j.biomaterials.2003.12.046. PubMed DOI

Wu X., Tan Y., Mao H., Zhang M. Toxic Effects of Iron Oxide Nanoparticles on Human Umbilical Vein Endothelial Cells. Int. J. Nanomed. 2010;2010:385–399. doi: 10.2147/IJN.S10458. PubMed DOI PMC

Cromer Berman S.M., Kshitiz, Wang C.J., Orukari I., Levchenko A., Bulte J.W.M., Walczak P. Cell Motility of Neural Stem Cells Is Reduced After Spio-Labeling, Which Is Mitigated After Exocytosis. Magn. Reson. Med. 2013;69:255–262. doi: 10.1002/mrm.24216. PubMed DOI PMC

Tay C.Y., Cai P., Setyawati M.I., Fang W., Tan L.P., Hong C.H.L., Chen X., Leong D.T. Nanoparticles Strengthen intracellular Tension and Retard Cellular Migration. Nano Lett. 2013;14:83–88. doi: 10.1021/nl4032549. PubMed DOI

Yañez R., Lamana M.L., García-Castro J., Colmenero I., Ramírez M., Bueren J.A. Adipose Tissue-Derived Mesenchymal Stem Cells Have in vivo Immunosuppressive Properties Applicable For the Control of the Graft-Versus-Host Disease. Stem Cells. 2006;24:2582–2591. doi: 10.1634/stemcells.2006-0228. PubMed DOI

Baiazitova L., Skopalik J., Cmiel V., Chmelik J., Svoboda O., Provaznik I. World Congress on Medical Physics and Biomedical Engineering 2018. Springer; Singapore: 2019. Modern Semi-Automatic Set-Up for Testing Cell Migration with Impact for Therapy of Myocardial infarction; pp. 155–159. IFMBE Proceedings.

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Rueden C.T., Schindelin J., Hiner M.C., DeZonia B.E., Walter A.E., Arena E.T., Eliceiri K.W. Imagej2: Imagej For the Next Generation of Scientific Image Data. BMC Bioinform. 2017;18:529. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...