The Effect of Rhodamine-Derived Superparamagnetic Maghemite Nanoparticles on the Motility of Human Mesenchymal Stem Cells and Mouse Embryonic Fibroblast Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30934664
PubMed Central
PMC6479307
DOI
10.3390/molecules24071192
PII: molecules24071192
Knihovny.cz E-zdroje
- Klíčová slova
- cytotoxicity, fibroblast cells, magnetic nanoparticles, mesenchymal stem cells, single-cell migration, wound healing assay,
- MeSH
- biologické markery MeSH
- buněčné linie MeSH
- fibroblasty účinky léků metabolismus MeSH
- imunofenotypizace MeSH
- lidé MeSH
- magnetické nanočástice * chemie MeSH
- mezenchymální kmenové buňky účinky léků metabolismus MeSH
- myši MeSH
- pohyb buněk účinky léků MeSH
- proliferace buněk účinky léků MeSH
- průtoková cytometrie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rhodaminy chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- magnetické nanočástice * MeSH
- reaktivní formy kyslíku MeSH
- rhodaminy MeSH
Nanoparticles have become popular in life sciences in the last few years. They have been produced in many variants and have recently been used in both biological experiments and in clinical applications. Due to concerns over nanomaterial risks, there has been a dramatic increase in investigations focused on safety research. The aim of this paper is to present the advanced testing of rhodamine-derived superparamagnetic maghemite nanoparticles (SAMN-R), which are used for their nontoxicity, biocompatibility, biodegradability, and magnetic properties. Recent results were expanded upon from the basic cytotoxic tests to evaluate cell proliferation and migration potential. Two cell types were used for the cell proliferation and tracking study: mouse embryonic fibroblast cells (3T3) and human mesenchymal stem cells (hMSCs). Advanced microscopic methods allowed for the precise quantification of the function of both cell types. This study has demonstrated that a dose of nanoparticles lower than 20 µg·cm-2 per area of the dish does not negatively affect the cells' morphology, migration, cytoskeletal function, proliferation, potential for wound healing, and single-cell migration in comparison to standard CellTracker™ Green CMFDA (5-chloromethylfluorescein diacetate). A higher dose of nanoparticles could be a potential risk for cytoskeletal folding and detachment of the cells from the solid extracellular matrix.
Zobrazit více v PubMed
Ramaswamy S., Greco J.B., Uluer M.C., Zhang Z., Zhang Z., Fishbein K.W., Spencer R.G. Magnetic Resonance Imaging of Chondrocytes Labeled with Superparamagnetic Iron Oxide Nanoparticles in Tissue-Engineered Cartilage. Tissue Eng. Part A. 2009;15:3899–3910. doi: 10.1089/ten.tea.2008.0677. PubMed DOI PMC
Sun J., Zhou S., Hou P., Yang Y., Weng J., Li X., Li M. Synthesis and Characterization of Biocompatible Fe3O4 Nanoparticles. J. Biomed. Mater. Res. Part A. 2007;80A:333–341. doi: 10.1002/jbm.a.30909. PubMed DOI
Kyrtatos P.G., Lehtolainen P., Junemann-Ramirez M., Garcia-Prieto A., Price A.N., Martin J.F., Gadian D.G., Pankhurst Q.A., Lythgoe M.F. Magnetic Tagging increases Delivery of Circulating Progenitors in Vascular injury. JACC: Cardiovasc. Interv. 2009;2:794–802. doi: 10.1016/j.jcin.2009.05.014. PubMed DOI
Ito A., Hibino E., Kobayashi C., Terasaki H., Kagami H., Ueda M., Kobayashi T., Honda H. Construction and Delivery of Tissue-Engineered Human Retinal Pigment Epithelial Cell Sheets, Using Magnetite Nanoparticles and Magnetic Force. Tissue Eng. 2005;11:489–496. doi: 10.1089/ten.2005.11.489. PubMed DOI
Scherer F., Anton M., Schillinger U., Henke J., Bergemann C., Krüger A., Gänsbacher B., Plank C. Magnetofection: Enhancing and Targeting Gene Delivery by Magnetic Force in vitro and in vivo. Gene Ther. 2002;9:102–109. doi: 10.1038/sj.gt.3301624. PubMed DOI
Reddy L.H., Arias J.L., Nicolas J., Couvreur P. Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chem. Rev. 2012;112:5818–5878. doi: 10.1021/cr300068p. PubMed DOI
Cmiel V., Skopalik J., Polakova K., Solar J., Havrdova M., Milde D., Justan I., Magro M., Starcuk Z., Provaznik I. Rhodamine Bound Maghemite As A Long-Term Dual Imaging Nanoprobe of Adipose Tissue-Derived Mesenchymal Stromal Cells. Eur. Biophys. J. 2017;46:433–444. doi: 10.1007/s00249-016-1187-1. PubMed DOI
Skopalik J., Polakova K., Havrdova M., Justan I., Magro M., Milde D., Knopfova L., Smarda J., Polakova H., Gabrielova E., et al. Mesenchymal Stromal Cell Labeling by New Uncoated Superparamagnetic Maghemite Nanoparticles in Comparison with Commercial Resovist—An initial in vitro Study. Int. J. Nanomed. 2014;2014:5355–5372. doi: 10.2147/IJN.S66986. PubMed DOI PMC
Kong B., Seog J.H., Graham L.M., Lee S.B. Experimental Considerations on the Cytotoxicity of Nanoparticles. Nanomedicine. 2011;6:929–941. doi: 10.2217/nnm.11.77. PubMed DOI PMC
Dai X., Liu J., Zheng H., Wichmann J., Hopfner U., Sudhop S., Prein C., Shen Y., Machens H.-G., Schilling A.F. Nano-Formulated Curcumin Accelerates Acute Wound Healing Through Dkk-1-Mediated Fibroblast Mobilization and Mcp-1-Mediated Anti-inflammation. NPG Asia Mater. 2017;9:e368. doi: 10.1038/am.2017.31. DOI
Haubner F., Muschter D., Pohl F., Schreml S., Prantl L., Gassner H. A Co-Culture Model of Fibroblasts and Adipose Tissue-Derived Stem Cells Reveals New insights into Impaired Wound Healing After Radiotherapy. Int. J. Mol. Sci. 2015;16:25947–25958. doi: 10.3390/ijms161125935. PubMed DOI PMC
Magro M., Sinigaglia G., Nodari L., Tucek J., Polakova K., Marusak Z., Cardillo S., Salviulo G., Russo U., Stevanato R., et al. Charge Binding of Rhodamine Derivative TO Oh−Stabilized Nanomaghemite: Universal Nanocarrier For Construction of Magnetofluorescent Biosensors. Acta Biomater. 2012;8:2068–2076. doi: 10.1016/j.actbio.2012.02.005. PubMed DOI
Ettinger A., Wittmann T. Quantitative Imaging in Cell Biology. Elsevier; Amsterdam, The Netherlands: 2014. Fluorescence Live Cell Imaging; pp. 77–94. Methods in Cell Biology. PubMed PMC
Jensen E.C. Use of Fluorescent Probes: Their Effect on Cell Biology and Limitations. Anat. Record. 2012;295:2031–2036. doi: 10.1002/ar.22602. PubMed DOI
Kramer N., Walzl A., Unger C., Rosner M., Krupitza G., Hengstschläger M., Dolznig H. in vitro Cell Migration and invasion Assays. Mutat. Res./Rev. Mutat. Res. 2013;752:10–24. doi: 10.1016/j.mrrev.2012.08.001. PubMed DOI
Fronza M., Heinzmann B., Hamburger M., Laufer S., Merfort I. Determination of the Wound Healing Effect of Calendula Extracts Using the Scratch Assay With 3T3 Fibroblasts. J. Ethnopharmacol. 2009;126:463–467. doi: 10.1016/j.jep.2009.09.014. PubMed DOI
Yeom C.-H., Lee G., Park J.-H., Yu J., Park S., Yi S.-Y., Lee H., Hong Y., Yang J., Lee S. High Dose Concentration Administration of Ascorbic Acid inhibits Tumor Growth in Balb/c Mice Implanted with Sarcoma 180 Cancer Cells Via the Restriction of Angiogenesis. J. Transl. Med. 2009;7:1–9. doi: 10.1186/1479-5876-7-70. PubMed DOI PMC
Liu Q., Xu Y., Wei S., Gao W., Chen L., Zhou T., Wang Z., Ying M., Zheng Q. Mirna-148B Suppresses Hepatic Cancer Stem Cell by Targeting Neuropilin-1. Biosci. Rep. 2015;35:e00229. doi: 10.1042/BSR20150084. PubMed DOI PMC
Liang C.-C., Park A.Y., Guan J.-L. in vitro Scratch Assay: A Convenient and inexpensive Method for Analysis of Cell Migration in vitro. Nat. Protoc. 2007;2:329–333. doi: 10.1038/nprot.2007.30. PubMed DOI
De Pascalis C., Etienne-Manneville S., Weaver V.M. Single and Collective Cell Migration: the Mechanics of Adhesions. Mol. Biol. Cell. 2017;28:1833–1846. doi: 10.1091/mbc.e17-03-0134. PubMed DOI PMC
Lintz M., Muñoz A., Reinhart-King C.A. the Mechanics of Single Cell and Collective Migration of Tumor Cells. J. Biomech. Eng. 2017;139:1–9. doi: 10.1115/1.4035121. PubMed DOI PMC
Jin C.-Y., Zhu B.-S., Wang X.-F., Lu Q.-H. Cytotoxicity of Titanium Dioxide Nanoparticles in Mouse Fibroblast Cells. Chem. Res. Toxicol. 2008;21:1871–1877. doi: 10.1021/tx800179f. PubMed DOI
Coradeghini R., Gioria S., García C.P., Nativo P., Franchini F., Gilliland D., Ponti J., Rossi F. Size-Dependent Toxicity and Cell interaction Mechanisms of Gold Nanoparticles on Mouse Fibroblasts. Toxicol. Lett. 2013;217:205–216. doi: 10.1016/j.toxlet.2012.11.022. PubMed DOI
Vikesland P.J., Rebodos R.L., Bottero J.Y., Rose J., Masion A. Aggregation and Sedimentation of Magnetite Nanoparticle Clusters. Environ. Sci. Nano. 2016;3:567–577. doi: 10.1039/C5EN00155B. DOI
Pernodet N., Fang X., Sun Y., Bakhtina A., Ramakrishnan A., Sokolov J., Ulman A., Rafailovich M. Adverse Effects of Citrate/gold Nanoparticles on Human Dermal Fibroblasts. Small. 2006;2:766–773. doi: 10.1002/smll.200500492. PubMed DOI
Berry C.C., Wells S., Charles S., Aitchison G., Curtis A.S.G. Cell Response to Dextran-Derivatised Iron Oxide Nanoparticles Post internalisation. Biomaterials. 2004;25:5405–5413. doi: 10.1016/j.biomaterials.2003.12.046. PubMed DOI
Wu X., Tan Y., Mao H., Zhang M. Toxic Effects of Iron Oxide Nanoparticles on Human Umbilical Vein Endothelial Cells. Int. J. Nanomed. 2010;2010:385–399. doi: 10.2147/IJN.S10458. PubMed DOI PMC
Cromer Berman S.M., Kshitiz, Wang C.J., Orukari I., Levchenko A., Bulte J.W.M., Walczak P. Cell Motility of Neural Stem Cells Is Reduced After Spio-Labeling, Which Is Mitigated After Exocytosis. Magn. Reson. Med. 2013;69:255–262. doi: 10.1002/mrm.24216. PubMed DOI PMC
Tay C.Y., Cai P., Setyawati M.I., Fang W., Tan L.P., Hong C.H.L., Chen X., Leong D.T. Nanoparticles Strengthen intracellular Tension and Retard Cellular Migration. Nano Lett. 2013;14:83–88. doi: 10.1021/nl4032549. PubMed DOI
Yañez R., Lamana M.L., García-Castro J., Colmenero I., Ramírez M., Bueren J.A. Adipose Tissue-Derived Mesenchymal Stem Cells Have in vivo Immunosuppressive Properties Applicable For the Control of the Graft-Versus-Host Disease. Stem Cells. 2006;24:2582–2591. doi: 10.1634/stemcells.2006-0228. PubMed DOI
Baiazitova L., Skopalik J., Cmiel V., Chmelik J., Svoboda O., Provaznik I. World Congress on Medical Physics and Biomedical Engineering 2018. Springer; Singapore: 2019. Modern Semi-Automatic Set-Up for Testing Cell Migration with Impact for Therapy of Myocardial infarction; pp. 155–159. IFMBE Proceedings.
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Rueden C.T., Schindelin J., Hiner M.C., DeZonia B.E., Walter A.E., Arena E.T., Eliceiri K.W. Imagej2: Imagej For the Next Generation of Scientific Image Data. BMC Bioinform. 2017;18:529. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC