Tests on Material Compatibility of Phase Change Materials and Selected Plastics
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-20943S "Compatibility of plastics and metals with latent heat storage media for integration in buildings"
Grantová Agentura České Republiky
PubMed
30974726
PubMed Central
PMC6479576
DOI
10.3390/molecules24071398
PII: molecules24071398
Knihovny.cz E-zdroje
- Klíčová slova
- PCMs, buildings, encapsulation, heat storage, phase change materials,
- MeSH
- polyethylen chemie MeSH
- polypropyleny chemie MeSH
- polyvinylchlorid chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polyethylen MeSH
- polypropyleny MeSH
- polyvinylchlorid MeSH
Practical applications of Phase Change Materials (PCMs) often require their encapsulation in other materials, such as metals or plastics. This raises the issue of compatibility between PCMs and encapsulating materials, which has still not been sufficiently addressed. The study presented here follows existing research and provides experimental evaluation of the suitability of selected PCMs for proposed integration in building structures. Two organic PCMs, two inorganic PCMs and three representative plastics (polypropylene (PP-H), high density polyethylene (PE-HD) and polyvinylchloride (PVC-U)) were selected for compatibility tests. Evaluation of the results is based on the mass variations of the plastic samples during the test period. Plastic samples were immersed in PCMs and subjected to periodic heating and cooling (for 16 weeks) in a small environmental chamber simulating real operational conditions. The results show that the organic PCMs have a greater ability to penetrate the PE-HD and PP-H compared with the inorganic PCMs. The penetration of all PCMs was most notable during the first four weeks of the experiment. Later it slowed down significantly. Overall, the mass changes in PE-HD and PP-H samples did not exceed 6.9% when immersed in organic PCMs and 1.8% in inorganic PCMs. PVC-U samples exhibited almost negligible (less than 0.1%) mass variation in all cases.
Zobrazit více v PubMed
Alva G., Lin Y., Fang G. An overview of thermal energy storage systems. Energy. 2018;144:341–378. doi: 10.1016/j.energy.2017.12.037. DOI
Schnieders J., Feist W., Rongenc L. Passive Houses for different climate zones. Energy Build. 2015;105:71–87. doi: 10.1016/j.enbuild.2015.07.032. DOI
Tyagi V.V., Buddhi D. PCM thermal storage in buildings: A state of art. Renewable Sustainable Energy Rev. 2007;11:1146–1166. doi: 10.1016/j.rser.2005.10.002. DOI
Salukhe P.B., Shembekar P.S. A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable Sustainable Energy Rev. 2012;16:5603–5616. doi: 10.1016/j.rser.2012.05.037. DOI
Milián Y.E., Gutiérrez A., Grágeda M., Ushak S. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renewable Sustainable Energy Rev. 2017;73:983–999. doi: 10.1016/j.rser.2017.01.159. DOI
Kuznik F., David D., Johannes K., Roux J.-J. A review on phase change materials integrated in building walls. Renewable Sustainable Energy Rev. 2011;15:379–391. doi: 10.1016/j.rser.2010.08.019. DOI
Regin F.A., Solanki S.C., Saini J.S. Heat transfer characteristics of thermal energy storage system using PCM capsules: A review. Renewable Sustainable Energy Rev. 2008;12:2438–2458. doi: 10.1016/j.rser.2007.06.009. DOI
Khan Z., Khan Z., Ghafoor A. A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Convers. Manag. 2016;115:132–158. doi: 10.1016/j.enconman.2016.02.045. DOI
Ushak S., Marín P., Galazutdinova Y., Cabeza L.F., Farid M.M., Grágeda Compatibility of materials for macroencapsulation of inorganic phase change materials: Experimental corrosion study. Appl. Therm. Eng. 2016;107:410–419. doi: 10.1016/j.applthermaleng.2016.06.171. DOI
Ferrer G., Solé A., Barreneche C., Martonell I., Cabeza L.F. Corrosion of metal containers for use in PCM energy storage. Renewable Energy. 2015;76:465–469. doi: 10.1016/j.renene.2014.11.036. DOI
Moreno P., Miró L., Solé A., Barreneche C., Solé C., Martonell I., Cabeza L.F. Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications. Appl. Energy. 2014;125:238–245. doi: 10.1016/j.apenergy.2014.03.022. DOI
Krishna D.J., Shinde A. Step by Step Methodology for the Assessment of Metal Corrosion Rate with PCMs Suitable for Low Temperature Heat Storage Applications. Mater. Today: Proc. 2017;4:10039–10042. doi: 10.1016/j.matpr.2017.06.317. DOI
Sarı A., Kaygusuz K. Some fatty acids used for latent heat storage: Thermal stability and corrosion of metals with respect to thermal cycling. Renewable Energy. 2003;28:939–948. doi: 10.1016/S0960-1481(02)00110-6. DOI
Browne M., Boyd E., McCormack S.J. Investigation of the corrosive properties of phase change materials in contact with metals and plastic. Renewable Energy. 2017;108:555–568. doi: 10.1016/j.renene.2017.02.082. DOI
Calogero A., Capra G. Industrial test optimisation: Compatibility between plastics and chemical solutions. Polym. Test. 2001;20:749–752. doi: 10.1016/S0142-9418(01)00025-3. DOI
Durbin T.D., Karavalakis G., Norbeck J.M., Park C.S., Castillo J., Rheem Y., Bumiller K., Yang J., Van V., Hunter K. Material compatibility evaluation for elastomers, plastics, and metals exposed to ethanol and butanol blends. Fuel. 2016;163:248–259. doi: 10.1016/j.fuel.2015.09.060. DOI
Oró E., Miró L., Barreneche C., Martonell I., Farid M.M., Cabeza L.F. Corrosion of metal and polymer containers for use in PCM cold storage. Appl. Energy. 2013;109:449–453.
Lázaro A., Zalba B., Bobi M., Castellón C., Cabeza L.F. Experimental study on phase change materials and plastics compatibility. Environ. Energy Eng. 2006;52:804–808. doi: 10.1002/aic.10643. DOI
Vasu A., Hagos F.Y., Noor M.M., Mamat R., Azmi W.H., Abdullah A.A., Ibrahim T.K. Corrosion effect of phase change materials in solar thermal energy storage application. Renewable Sustainable Energy Rev. 2017;76:19–33. doi: 10.1016/j.rser.2017.03.018. DOI
Castellón C., Martorell I., Cabeza L.F., Fernández A.I., Manich A.M. Compatibility of plastic with phase change materials (PCM) Int. J. Energy Res. 2011;35:765–771. doi: 10.1002/er.1723. DOI
Kass M.D., Janke C.J., Connatser R.M., Lewis S.A., Keiser J.R., Gaston K. Compatibility Assessment of Fuel System Infrastructure Plastics with Bio-oil and Diesel Fuel. Energy Fuels. 2018;32:542–553. doi: 10.1021/acs.energyfuels.7b03121. DOI
ISO 175:2010 Plastics—Methods of test for the determination of the effect of immersion in liquid chemicals. [(accessed on 15 February 2019)]; Available online: https://www.iso.org/standard/55483.html.