Nuclear transport of nicotinamide phosphoribosyltransferase is cell cycle-dependent in mammalian cells, and its inhibition slows cell growth
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
30975903
PubMed Central
PMC6552417
DOI
10.1074/jbc.ra118.003505
PII: S0021-9258(20)36387-0
Knihovny.cz E-resources
- Keywords
- GFP fusion, NAMPT, cancer, epigenetics, nicotinamide adenine dinucleotide (NAD), nuclear localization, pre–B cell colony enhancing factor (PBEF), sirtuin, visfatin,
- MeSH
- Acrylamides pharmacology MeSH
- Active Transport, Cell Nucleus MeSH
- Cell Nucleus metabolism MeSH
- 3T3-L1 Cells MeSH
- Hep G2 Cells MeSH
- Cytoplasm metabolism MeSH
- Histones metabolism MeSH
- Cell Cycle Checkpoints MeSH
- Humans MeSH
- Mutagenesis, Site-Directed MeSH
- Mice MeSH
- NAD metabolism MeSH
- Nicotinamide Phosphoribosyltransferase chemistry genetics metabolism MeSH
- Oxidative Stress MeSH
- Piperidines pharmacology MeSH
- Poly(ADP-ribose) Polymerases metabolism MeSH
- Cell Proliferation MeSH
- Recombinant Fusion Proteins chemistry genetics metabolism MeSH
- Sirtuins metabolism MeSH
- Cell Survival drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acrylamides MeSH
- Histones MeSH
- N-(4-(1-benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide MeSH Browser
- NAD MeSH
- Nicotinamide Phosphoribosyltransferase MeSH
- Piperidines MeSH
- Poly(ADP-ribose) Polymerases MeSH
- Recombinant Fusion Proteins MeSH
- Sirtuins MeSH
Nicotinamide phosphoribosyltransferase (NAMPT) is located in both the nucleus and cytoplasm and has multiple biological functions including catalyzing the rate-limiting step in NAD synthesis. Moreover, up-regulated NAMPT expression has been observed in many cancers. However, the determinants and regulation of NAMPT's nuclear transport are not known. Here, we constructed a GFP-NAMPT fusion protein to study NAMPT's subcellular trafficking. We observed that in unsynchronized 3T3-L1 preadipocytes, 25% of cells had higher GFP-NAMPT fluorescence in the cytoplasm, and 62% had higher GFP-NAMPT fluorescence in the nucleus. In HepG2 hepatocytes, 6% of cells had higher GFP-NAMPT fluorescence in the cytoplasm, and 84% had higher GFP-NAMPT fluorescence in the nucleus. In both 3T3-L1 and HepG2 cells, GFP-NAMPT was excluded from the nucleus immediately after mitosis and migrated back into it as the cell cycle progressed. In HepG2 cells, endogenous, untagged NAMPT displayed similar changes with the cell cycle, and in nonmitotic cells, GFP-NAMPT accumulated in the nucleus. Similarly, genotoxic, oxidative, or dicarbonyl stress also caused nuclear NAMPT localization. These interventions also increased poly(ADP-ribosyl) polymerase and sirtuin activity, suggesting an increased cellular demand for NAD. We identified a nuclear localization signal in NAMPT and amino acid substitution in this sequence (424RSKK to ASGA), which did not affect its enzymatic activity, blocked nuclear NAMPT transport, slowed cell growth, and increased histone H3 acetylation. These results suggest that NAMPT is transported into the nucleus where it presumably increases NAD synthesis required for cell proliferation. We conclude that specific inhibition of NAMPT transport into the nucleus might be a potential avenue for managing cancer.
Analytical Chemistry University of Chemistry and Technology Prague Prague 6 166 28 Czech Republic
Diabetes Centre Institute for Clinical and Experimental Medicine Prague 4 140 21 Czech Republic and
From the Departments of Biochemistry and Microbiology
the Centre for Experimental Medicine and
the Institute of Physiology Czech Academy of Sciences Prague 4 142 20 Czech Republic
See more in PubMed
Revollo J. R., Grimm A. A., and Imai S. (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 279, 50754–50763 10.1074/jbc.M408388200 PubMed DOI
Berger F., Ramírez-Hernández M. H., and Ziegler M. (2004) The new life of a centenarian: signalling functions of NAD(P). Trends Biochem. Sci. 29, 111–118 10.1016/j.tibs.2004.01.007 PubMed DOI
Cantó C., Menzies K. J., and Auwerx J. (2015) NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22, 31–53 10.1016/j.cmet.2015.05.023 PubMed DOI PMC
Mohammadi M., Mianabadi F., and Mehrad-Majd H. (2019) Circulating visfatin levels and cancers risk: a systematic review and meta-analysis. J. Cell. Physiol. 234, 5011–5022 10.1002/jcp.27302 PubMed DOI
Moschen A. R., Geiger S., Gerner R., and Tilg H. (2010) Pre–B cell colony enhancing factor/NAMPT/visfatin and its role in inflammation-related bone disease. Mutat. Res. 690, 95–101 10.1016/j.mrfmmm.2009.06.012 PubMed DOI
Kitani T., Okuno S., and Fujisawa H. (2003) Growth phase-dependent changes in the subcellular localization of pre–B-cell colony-enhancing factor. FEBS Lett. 544, 74–78 10.1016/S0014-5793(03)00476-9 PubMed DOI
Buldak R. J., Skonieczna M., Buldak L., Matysiak N., Mielanczyk L., Wyrobiec G., Kukla M., Michalski M., and Zwirska-Korczala K. (2014) Changes in subcellular localization of visfatin in human colorectal HCT-116 carcinoma cell line after cytochalasin-B treatment. Eur. J. Histochem. 58, 2408 PubMed PMC
Ocón-Grove O. M., Krzysik-Walker S. M., Maddineni S. R., Hendricks G. L. 3rd, and Ramachandran R. (2010) NAMPT (visfatin) in the chicken testis: influence of sexual maturation on cellular localization, plasma levels and gene and protein expression. Reproduction 139, 217–226 10.1530/REP-08-0377 PubMed DOI
Romacho T., Villalobos L. A., Cercas E., Carraro R., Sánchez-Ferrer C. F., and Peiró C. (2013) Visfatin as a novel mediator released by inflamed human endothelial Cells. PLoS One 8, e78283 10.1371/journal.pone.0078283 PubMed DOI PMC
Baranovskiy A. G., Babayeva N. D., Suwa Y., Gu J., Pavlov Y. I., and Tahirov T. H. (2014) Structural basis for inhibition of DNA replication by aphidicolin. Nucleic Acids Res. 42, 14013–14021 10.1093/nar/gku1209 PubMed DOI PMC
Vassilev L. T., Tovar C., Chen S., Knezevic D., Zhao X., Sun H., Heimbrook D. C., and Chen L. (2006) Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc. Natl. Acad. Sci. U.S.A. 103, 10660–10665 10.1073/pnas.0600447103 PubMed DOI PMC
Kaufman E. R. (1985) Reversion analysis of mutations induced by 5-bromodeoxyuridine mutagenesis in mammalian cells. Mol. Cell. Biol. 5, 3092–3096 10.1128/MCB.5.11.3092 PubMed DOI PMC
Wood M., Rymarchyk S., Zheng S., and Cen Y. (2018) Trichostatin A inhibits deacetylation of histone H3 and p53 by SIRT6. Arch. Biochem. Biophys. 638, 8–17 10.1016/j.abb.2017.12.009 PubMed DOI PMC
Khan J. A., Tao X., and Tong L. (2006) Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents. Nat. Struct. Mol. Biol. 13, 582–588 10.1038/nsmb1105 PubMed DOI
Rongvaux A., Galli M., Denanglaire S., Van Gool F., Drèze P. L., Szpirer C., Bureau F., Andris F., and Leo O. (2008) Nicotinamide phosphoribosyl transferase/pre–B cell colony-enhancing factor/visfatin is required for lymphocyte development and cellular resistance to genotoxic stress. J. Immunol. 181, 4685–4695 10.4049/jimmunol.181.7.4685 PubMed DOI
Di Stefano M., and Conforti L. (2013) Diversification of NAD biological role: the importance of location. FEBS J. 280, 4711–4728 10.1111/febs.12433 PubMed DOI
Berger F., Lau C., Dahlmann M., and Ziegler M. (2005) Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. 280, 36334–36341 10.1074/jbc.M508660200 PubMed DOI
Zecchin A., Stapor P. C., Goveia J., and Carmeliet P. (2015) Metabolic pathway compartmentalization: an underappreciated opportunity? Curr. Opin. Biotechnol. 34, 73–81 10.1016/j.copbio.2014.11.022 PubMed DOI
Cambronne X. A., Stewart M. L., Kim D., Jones-Brunette A. M., Morgan R. K., Farrens D. L., Cohen M. S., and Goodman R. H. (2016) Biosensor reveals multiple sources for mitochondrial NAD+. Science 352, 1474–1477 10.1126/science.aad5168 PubMed DOI PMC
Timney B. L., Raveh B., Mironska R., Trivedi J. M., Kim S. J., Russel D., Wente S. R., Sali A., and Rout M. P. (2016) Simple rules for passive diffusion through the nuclear pore complex. J. Cell Biol. 215, 57–76 10.1083/jcb.201601004 PubMed DOI PMC
Boehler C., Gauthier L. R., Mortusewicz O., Biard D. S., Saliou J. M., Bresson A., Sanglier-Cianferani S., Smith S., Schreiber V., Boussin F., and Dantzer F. (2011) Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proc. Natl. Acad. Sci. U.S.A. 108, 2783–2788 10.1073/pnas.1016574108 PubMed DOI PMC
Chang H. C., and Guarente L. (2013) SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448–1460 10.1016/j.cell.2013.05.027 PubMed DOI PMC
Kozako T., Suzuki T., Yoshimitsu M., Arima N., Honda S., and Soeda S. (2014) Anticancer agents targeted to sirtuins. Molecules 19, 20295–20313 10.3390/molecules191220295 PubMed DOI PMC
Messner S., and Hottiger M. O. (2011) Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol. 21, 534–542 10.1016/j.tcb.2011.06.001 PubMed DOI
Schreiber V., Dantzer F., Ame J. C., and de Murcia G. (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol. 7, 517–528 10.1038/nrm1963 PubMed DOI
Vaquero A. (2009) The conserved role of sirtuins in chromatin regulation. Int. J. Dev. Biol. 53, 303–322 10.1387/ijdb.082675av PubMed DOI
Wang R. H., Lahusen T. J., Chen Q., Xu X., Jenkins L. M., Leo E., Fu H., Aladjem M., Pommier Y., Appella E., and Deng C. X. (2014) SIRT1 deacetylates TopBP1 and modulates intra-S-phase checkpoint and DNA replication origin firing. Int. J. Biol. Sci. 10, 1193–1202 10.7150/ijbs.11066 PubMed DOI PMC
Williamson W. D., and Pinto I. (2012) Histones and genome integrity. Front. Biosci. (Landmark Ed.) 17, 984–995 10.2741/3969 PubMed DOI
Opitz C. A., and Heiland I. (2015) Dynamics of NAD-metabolism: everything but constant. Biochem. Soc. Trans. 43, 1127–1132 10.1042/BST20150133 PubMed DOI
Vodenicharov M. D., Ghodgaonkar M. M., Halappanavar S. S., Shah R. G., and Shah G. M. (2005) Mechanism of early biphasic activation of poly(ADP-ribose) polymerase-1 in response to ultraviolet B radiation. J. Cell Sci. 118, 589–599 10.1242/jcs.01636 PubMed DOI
Kosugi S., Hasebe M., Tomita M., and Yanagawa H. (2009) Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. U.S.A. 106, 13142 10.1073/pnas.0907506106 PubMed DOI PMC
Christie M., Chang C. W., Róna G., Smith K. M., Stewart A. G., Takeda A. A., Fontes M. R., Stewart M., Vértessy B. G., Forwood J. K., and Kobe B. (2016) Structural biology and regulation of protein import into the nucleus. J. Mol. Biol. 428, 2060–2090 10.1016/j.jmb.2015.10.023 PubMed DOI
Pumroy R. A., and Cingolani G. (2015) Diversification of importin-α isoforms in cellular trafficking and disease states. Biochem. J. 466, 13–28 10.1042/BJ20141186 PubMed DOI PMC
Melen K., Fagerlund R., Franke J., Kohler M., Kinnunen L., and Julkunen I. (2003) Importin α nuclear localization signal binding sites for STAT1, STAT2, and influenza a virus nucleoprotein. J. Biol. Chem. 278, 28193–28200 10.1074/jbc.M303571200 PubMed DOI
Khaidizar F. D., Nakahata Y., Kume A., Sumizawa K., Kohno K., Matsui T., and Bessho Y. (2017) Nicotinamide phosphoribosyltransferase delays cellular senescence by upregulating SIRT1 activity and antioxidant gene expression in mouse cells. Genes Cells 22, 982–992 10.1111/gtc.12542 PubMed DOI
Alaee M., Khaghani S., Behroozfar K., Hesari Z., Ghorbanhosseini S. S., and Nourbakhsh M. (2017) Inhibition of nicotinamide phosphoribosyltransferase induces apoptosis in estrogen receptor-positive MCF-7 breast cancer cells. J. Breast Cancer 20, 20–26 10.4048/jbc.2017.20.1.20 PubMed DOI PMC
Thakur B. K., Dittrich T., Chandra P., Becker A., Kuehnau W., Klusmann J. H., Reinhardt D., and Welte K. (2013) Involvement of p53 in the cytotoxic activity of the NAMPT inhibitor FK866 in myeloid leukemic cells. Int. J. Cancer 132, 766–774 10.1002/ijc.27726 PubMed DOI PMC
Olesen U. H., Thougaard A. V., Jensen P. B., and Sehested M. (2010) A preclinical study on the rescue of normal tissue by nicotinic acid in high-dose treatment with APO866, a specific nicotinamide phosphoribosyltransferase inhibitor. Mol. Cancer Ther. 9, 1609–1617 10.1158/1535-7163.MCT-09-1130 PubMed DOI
Shackelford R., Hirsh S., Henry K., Abdel-Mageed A., Kandil E., and Coppola D. (2013) Nicotinamide phosphoribosyltransferase and SIRT3 expression are increased in well-differentiated thyroid carcinomas. Anticancer Res. 33, 3047–3052 PubMed
Yan X., Zhao J., and Zhang R. (2017) Visfatin mediates doxorubicin resistance in human colorectal cancer cells via up regulation of multidrug resistance 1 (MDR1). Cancer Chemother. Pharmacol. 80, 395–403 10.1007/s00280-017-3365-y PubMed DOI
Cao Z., Liang N., Yang H., and Li S. (2017) Visfatin mediates doxorubicin resistance in human non-small-cell lung cancer via Akt-mediated up-regulation of ABCC1. Cell Prolif. 50, 12366 PubMed PMC
Ke H. L., Lin H. H., Li W. M., Li C. C., Chang L. L., Lee Y. C., Huang C. N., and Wu W. J. (2015) High visfatin expression predicts poor prognosis of upper tract urothelial carcinoma patients. Am. J. Cancer Res. 5, 2447–2454 PubMed PMC
Reddy P. S., Umesh S., Thota B., Tandon A., Pandey P., Hegde A. S., Balasubramaniam A., Chandramouli B. A., Santosh V., Rao M. R., Kondaiah P., and Somasundaram K. (2008) PBEF1/NAmPRTase/visfatin: a potential malignant astrocytoma/glioblastoma serum marker with prognostic value. Cancer Biol. Ther. 7, 663–668 10.4161/cbt.7.5.5663 PubMed DOI
Chiarugi A., Dölle C., Felici R., and Ziegler M. (2012) The NAD metabolome: a key determinant of cancer cell biology. Nat. Rev. Cancer 12, 741–752 10.1038/nrc3340 PubMed DOI
Kroemer G., and Pouyssegur J. (2008) Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472–482 10.1016/j.ccr.2008.05.005 PubMed DOI
Ossovskaya V., Koo I. C., Kaldjian E. P., Alvares C., and Sherman B. M. (2010) Upregulation of poly(ADP-ribose) polymerase-1 (PARP1) in triple-negative breast cancer and other primary human tumor types. Genes Cancer 1, 812–821 10.1177/1947601910383418 PubMed DOI PMC
Khan J. A., Forouhar F., Tao X., and Tong L. (2007) Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery. Expert Opin. Ther. Targets 11, 695–705 10.1517/14728222.11.5.695 PubMed DOI
von Heideman A., Berglund A., Larsson R., and Nygren P. (2010) Safety and efficacy of NAD depleting cancer drugs: results of a phase I clinical trial of CHS 828 and overview of published data. Cancer Chemother. Pharmacol. 65, 1165–1172 10.1007/s00280-009-1125-3 PubMed DOI
Del Nagro C., Xiao Y., Rangell L., Reichelt M., and O'Brien T. (2014) Depletion of the central metabolite NAD leads to oncosis-mediated cell death. J. Biol. Chem. 289, 35182–35192 10.1074/jbc.M114.580159 PubMed DOI PMC
Hasmann M., and Schemainda I. (2003) FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res. 63, 7436–7442 PubMed
Tan B., Young D. A., Lu Z. H., Wang T., Meier T. I., Shepard R. L., Roth K., Zhai Y., Huss K., Kuo M. S., Gillig J., Parthasarathy S., Burkholder T. P., Smith M. C., Geeganage S., et al. (2013) Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, in human cancer cells: metabolic basis and potential clinical implications. J. Biol. Chem. 288, 3500–3511 10.1074/jbc.M112.394510 PubMed DOI PMC
Roulston A., and Shore G. C. (2016) New strategies to maximize therapeutic opportunities for NAMPT inhibitors in oncology. Mol. Cell Oncol 3, e1052180 10.1080/23723556.2015.1052180 PubMed DOI PMC
Tarrant J. M., Dhawan P., Singh J., Zabka T. S., Clarke E., DosSantos G., Dragovich P. S., Sampath D., Lin T., McCray B., La N., Nguyen T., Kauss A., Dambach D., Misner D. L., et al. (2015) Preclinical models of nicotinamide phosphoribosyltransferase inhibitor-mediated hematotoxicity and mitigation by co-treatment with nicotinic acid. Toxicol. Mech. Methods 25, 201–211 10.3109/15376516.2015.1014080 PubMed DOI
Holen K., Saltz L. B., Hollywood E., Burk K., and Hanauske A. R. (2008) The pharmacokinetics, toxicities, and biologic effects of FK866, a nicotinamide adenine dinucleotide biosynthesis inhibitor. Invest. New Drugs 26, 45–51 10.1007/s10637-007-9083-2 PubMed DOI
Zabka T. S., Singh J., Dhawan P., Liederer B. M., Oeh J., Kauss M. A., Xiao Y., Zak M., Lin T., McCray B., La N., Nguyen T., Beyer J., Farman C., Uppal H., et al. (2015) Retinal toxicity, in vivo and in vitro, associated with inhibition of nicotinamide phosphoribosyltransferase. Toxicol. Sci. 144, 163–172 10.1093/toxsci/kfu268 PubMed DOI
Neumann C. S., Olivas K. C., Anderson M. E., Cochran J. H., Jin S., Li F., Loftus L. V., Meyer D. W., Neale J., Nix J. C., Pittman P. G., Simmons J. K., Ulrich M. L., Waight A. B., Wong A., et al. (2018) Targeted delivery of cytotoxic NAMPT inhibitors using antibody–drug conjugates. Mol. Cancer Ther. 17, 2633–2642 10.1158/1535-7163.MCT-18-0643 PubMed DOI
Liederer B. M., Cheong J., Chou K. J., Dragovich P. S., Le H., Liang X., Ly J., Mukadam S., Oeh J., Sampath D., Wang L., and Wong S. (2018) Preclinical assessment of the ADME, efficacy and drug–drug interaction potential of a novel NAMPT inhibitor. Xenobiotica, 1–56 10.1080/00498254.2018.1528407 PubMed DOI
Revollo J. R., Körner A., Mills K. F., Satoh A., Wang T., Garten A., Dasgupta B., Sasaki Y., Wolberger C., Townsend R. R., Milbrandt J., Kiess W., and Imai S. (2007) Nampt/PBEF/visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell Metab. 6, 363–375 10.1016/j.cmet.2007.09.003 PubMed DOI PMC
Skop V., Cahova M., Dankova H., Papackova Z., Palenickova E., Svoboda P., Zidkova J., and Kazdova L. (2014) Autophagy inhibition in early but not in later stages prevents 3T3-L1 differentiation: effect on mitochondrial remodeling. Differentiation 87, 220–229 10.1016/j.diff.2014.06.002 PubMed DOI
Skop V., Kontrová K., Zídek V., Pravenec M., Kazdová L., Mikulík K., Sajdok J., and Zidková J. (2010) Autocrine effects of visfatin on hepatocyte sensitivity to insulin action. Physiol. Res. 59, 615–618 PubMed
Svoboda P., Krizová E., Cenková K., Vápenková K., Zidková J., Zídek V., and Skop V. (2017) Visfatin is actively secreted in vitro from U-937 macrophages, but only passively released from 3T3-L1 adipocytes and HepG2 hepatocytes. Physiol. Res. 66, 709–714 PubMed
Wang T., Zhang X., Bheda P., Revollo J. R., Imai S., and Wolberger C. (2006) Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat. Struct. Mol. Biol. 13, 661–662 10.1038/nsmb1114 PubMed DOI
Nakai K., and Horton P. (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–36 10.1016/S0968-0004(98)01336-X PubMed DOI
Scott M. S., Boisvert F. M., McDowall M. D., Lamond A. I., and Barton G. J. (2010) Characterization and prediction of protein nucleolar localization sequences. Nucleic Acids Res. 38, 7388–7399 10.1093/nar/gkq653 PubMed DOI PMC
Scott M. S., Troshin P. V., and Barton G. J. (2011) NoD: a nucleolar localization sequence detector for eukaryotic and viral proteins. BMC Bioinformatics 12, 317 10.1186/1471-2105-12-317 PubMed DOI PMC
Nguyen Ba A. N., Pogoutse A., Provart N., and Moses A. M. (2009) NLStradamus: a simple hidden Markov model for nuclear localization signal prediction. BMC Bioinformatics 10, 202 10.1186/1471-2105-10-202 PubMed DOI PMC
Pan J. H., Zhou H., Zhu S. B., Huang J. L., Zhao X. X., Ding H., Qin L., and Pan Y. L. (2019) Nicotinamide phosphoribosyl transferase regulates cell growth via the Sirt1/P53 signaling pathway and is a prognosis marker in colorectal cancer. J Cell Physiol. 234, 4385–4395 10.1002/jcp.27228 PubMed DOI