A lignin polymer nanocomposite based electrochemical sensor for the sensitive detection of chlorogenic acid in coffee samples
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30976709
PubMed Central
PMC6441839
DOI
10.1016/j.heliyon.2019.e01457
PII: S2405-8440(18)38304-X
Knihovny.cz E-zdroje
- Klíčová slova
- Analytical chemistry, Electrochemistry, Materials chemistry,
- Publikační typ
- časopisecké články MeSH
In this study, an innovative nanocomposite of multiwalled carbon nanotubes (MWCNTs), copper oxide nanoparticles (CuONPs) and lignin (LGN) polymer were successfully synthesized and used to modify the glassy carbon electrode for the determination of chlorogenic acid (CGA). Cyclic voltammetry (CV) emphasised a quasi-reversible, adsorption controlled and pH dependent electrode procedure. In cyclic voltammetry a pair of well distinct redox peaks of CGA were observed at the LGN-MWCNTs-CuONPs-GCE in 0.1 M phosphate buffer solution (PBS), at pH 2. The synthesized nanoparticles and nanocomposites were characterized by Fourier transformation infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and x-ray diffraction (XRD) analyses. Differential pulse voltammetry (DPV) was applied to the anodic peak and used for the quantitative detection of CGA. Under optimal conditions, the proposed sensor showed linear responses from 5 μM to 50 μM, the linear regression equation Ipa (μA) = 2.6074 C-5.1027 (R2 = 0.995), whilst the limit of detection (LOD) and limit of quantifications (LOQ) were found to be 0.0125 μM and 0.2631 μM respectively. The LGN-MWCNTs-CuONPs-GCE were applied to detect the CGA in real coffee samples with the recovery ranging from 97 to 106 %. The developed sensor was successfully applied for the analysis of CGA content in the coffee samples. In addition, electrophilic, nucleophilic reactions and chlorogenic acid docking studies were carried out to better understand the redox mechanisms and were supported by density functional theory calculations.
Zobrazit více v PubMed
Leopoldini M., Russo N., Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011;125:288–306.
Xu H., Zheng Q., Yang P., Liu J., Xing S., Jin L. Electrochemical synthesis of silver nanoparticles-coated gold nanoporous film electrode and its application to amperometric detection for trace Cr(VI) Sci. China Chem. 2011;54:1004–1010.
Yardım Y., Keskin E., Şentürk Z. Voltammetric determination of mixtures of caffeine and chlorogenic acid in beverage samples using a boron-doped diamond electrode. Talanta. 2013;116:1010–1017. PubMed
Ma X., Chen M., Wu Y., Li X., Zhang S. Studies on the electrochemical behavior of chlorogenic acid and its interaction with DNA at a graphene modified electrode. Int. J. Electrochem. Sci. 2016;11:8499–8511.
Liang N., Kitts D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients. 2015;8:16. PubMed PMC
Tomac I., Šeruga M., Beinrohr E. Characterization of chlorogenic acids in coffee by flow-through chronopotentiometry. Food Anal. Methods. 2017:1–10.
Ayelign A., Sabally K. Determination of chlorogenic acids (CGA) in coffee beans using HPLC. Am. J. Res. Commun. 2013;1:78–91.
Alvarez-Jubete L., Wijngaard H., Arendt E., Gallagher E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem. 2010;119:770–778.
Meng S., Cao J., Feng Q., Peng J., Hu Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: a review. Evid. Based Complement Altern. Med. 2013;2013 PubMed PMC
Mohammadi N., Najafi M., Adeh N.B. Highly defective mesoporous carbon – ionic liquid paste electrode as sensitive voltammetric sensor for determination of chlorogenic acid in herbal extracts. Sensor. Actuator. B Chem. 2017;243:838–846.
Bassoli B.K., Cassolla P., Borba-Murad G.R., Constantin J., Salgueiro-Pagadigorria C.L., Bazotte R.B. Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochem. Funct. Cell. Biochem. Modulat. Act. Agents Dis. 2008;26:320–328. PubMed
Weisz G.M., Schneider L., Schweiggert U., Kammerer D.R., Carle R. Sustainable sunflower processing-I. Development of a process for the adsorptive decolorization of sunflower [Helianthus annuus L] protein extracts. Innov. Food Sci. Emerg. Technol. 2010;11:733–741.
Hurtado-Fernandez E., Gomez-Romero M., Carrasco-Pancorbo A., Fernández-Gutiérrez A. Application and potential of capillary electroseparation methods to determine antioxidant phenolic compounds from plant food material. J. Pharm. Biomed. Anal. 2010;53:1130–1160. PubMed
Es’haghi Z., Golsefidi M.A., Saify A., Tanha A.A., Rezaeifar Z., Alian-Nezhadi Z. Carbon nanotube reinforced hollow fiber solid/liquid phase microextraction: a novel extraction technique for the measurement of caffeic acid in Echinacea purpurea herbal extracts combined with high-performance liquid chromatography. J. Chromatogr. A. 2010;1217:2768–2775. PubMed
FU Y. Determination of the contents of chlorogenic acid and phillyrin of shuanghuanglian oral fluid using NIRS. Spectrosc. Spectr. Anal. 2010;30:358–362. PubMed
de Carvalho M.L., Santhiago M., Peralta R.A., Neves A., Micke G.A., Vieira I.C. Determination of chlorogenic acid in coffee using a biomimetic sensor based on a new tetranuclear copper (II) complex. Talanta. 2008;77:394–399. PubMed
Fernandes S.C., Moccelini S.K., Scheeren C.W., Migowski P., Dupont J., Heller M. Biosensor for chlorogenic acid based on an ionic liquid containing iridium nanoparticles and polyphenol oxidase. Talanta. 2009;79:222–228. PubMed
Alpar N., Yardım Y., Şentürk Z. Selective and simultaneous determination of total chlorogenic acids, vanillin and caffeine in foods and beverages by adsorptive stripping voltammetry using a cathodically pretreated boron-doped diamond electrode. Sensor. Actuator. B Chem. 2018;257:398–408.
Ribeiro C.M., Miguel E.M., Silva J.d.S., da Silva C.B., Goulart M.O., Kubota L.T. Application of a nanostructured platform and imprinted sol-gel film for determination of chlorogenic acid in food samples. Talanta. 2016;156:119–125. PubMed
Ma X., Yang H., Xiong H., Li X., Gao J., Gao Y. Electrochemical behavior and determination of chlorogenic acid based on multi-walled carbon nanotubes modified screen-printed electrode. Sensors. 2016;16:1797. PubMed PMC
Vasilescu I., Eremia S.A., Penu R., Albu C., Radoi A., Litescu S.C. Disposable dual sensor array for simultaneous determination of chlorogenic acid and caffeine from coffee. RSC Adv. 2015;5:261–268.
Chao M., Ma X. Voltammetric determination of chlorogenic acid in pharmaceutical products using poly (aminosulfonic acid) modified glassy carbon electrode. J. Food Drug Anal. 2014;22:512–519. PubMed PMC
Amare M., Aklog S. Electrochemical determination of caffeine content in Ethiopian coffee samples using lignin modified glassy carbon electrode. J. Anal. Methods Chem. 2017;2017 PubMed PMC
Zou C.E., Yang B., Bin D., Wang J., Li S., Yang P. Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. J. Colloid Interface Sci. 2017;488:135–141. PubMed
Li S., Yang B., Wang C., Wang J., Feng Y., Yan B. A facile and green fabrication of Cu2O-Au/NG nanocomposites for sensitive electrochemical determination of rutin. J. Electroanal. Chem. 2017;786:20–27.
Beitollahi H., Nekooei S., Torkzadeh-Mahani M. Amperometric immunosensor for prolactin hormone measurement using antibodies loaded on a nano-Au monolayer modified ionic liquid carbon paste electrode. Talanta. 2018;188:701–707. PubMed
Beitollahi H., Karimi-Maleh H., Khabazzadeh H. Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3, 4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal. Chem. 2008;80:9848–9851. PubMed
Beitollahi H., Ivari S.G., Torkzadeh-Mahani M. Application of antibody–nanogold–ionic liquid–carbon paste electrode for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Biosens. Bioelectron. 2018;110:97–102. PubMed
Beitollahi H., Garkani Nejad F. Graphene oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode. Electroanalysis. 2016;28:2237–2244.
Beitollahi H., Nekooei S. Application of a modified CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acetaminophen and N-acetyl-L-cysteine. Electroanalysis. 2016;28:645–653.
Aparna Y., Rao K.V., Subbarao P.S. Preparation and characterization of CuO Nanoparticles by novel sol-gel technique. J. Nano Electron. Phys. 2012;4 http://essuir.sumdu.edu.ua/handle/123456789/29602 3005-1.
Chokkareddy R., Bhajanthri N., Redhi G.G., Redhi D.G. Ultra-sensitive electrochemical sensor for the determination of pyrazinamide. Curr. Anal. Chem. 2018;14:391–398.
Chokkareddy R., Bhajanthri N.K., Redhi G.G. A novel electrode architecture for monitoring Rifampicin in various pharmaceuticals. Int. J. Electrochem. Sci. 2017;12:9190–9203.
Chokkareddy R., Bhajanthri N.K., Redhi G.G. An enzyme-induced novel biosensor for the sensitive electrochemical determination of isoniazid. Biosensors. 2017;7:21. PubMed PMC
Kayani Z.N., Umer M., Riaz S., Naseem S. Characterization of copper oxide nanoparticles fabricated by the sol–gel method. J. Electron. Mater. 2015;44:3704–3709.
Dodoo-Arhin D., Leoni M., Scardi P. Microemulsion synthesis of copper oxide nanorod- like structures. Mol. Cryst. Liq. Cryst. 2012;555:17–31.
Morales J., Sanchez L., Martin F., Ramos-Barrado J.R., Sánchez M. Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells. Electrochim. Acta. 2004;49:4589–4597.
Li W., Zheng Y., Fu X., Peng J., Ren L., Wang P. Electrochemical characterization of multi-walled carbon nanotubes/polyvinyl alcohol coated electrodes for biological applications. Int. J. Electrochem. Sci. 2013;8:5738–5754.
Parr R.G., Yang W. Oxford University Press; New York: 1989. Density-Functional Theory of Atoms and Molecules, Vol. 16 of International Series of Monographs on Chemistry.
Yardım Y. Electrochemical behavior of chlorogenic acid at a boron-doped diamond electrode and estimation of the antioxidant capacity in the coffee samples based on its oxidation peak. J. Food Sci. 2012;77:C408–C413. PubMed
Ma X.-Y., Yang H.-Q., Xiong H.-B., Li X.-F., Gao J.-T., Gao Y.-T. 2016. Electrochemical Behavior and Determination of Chlorogenic Acid Based on Carbon Nanotubes Modified Screen-Printed Electrode. PubMed PMC