Stress State Analysis and Failure Mechanisms of Masonry Columns Reinforced with FRP under Concentric Compressive Load
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
DF12P01OVV037
Ministerstvo Kultury
PubMed
30979269
PubMed Central
PMC6432427
DOI
10.3390/polym8050176
PII: polym8050176
Knihovny.cz E-resources
- Keywords
- CFRCM, CFRP, brick, experimental testing, external reinforcement, masonry, near surface reinforcement, stone,
- Publication type
- Journal Article MeSH
The strengthening and stabilization of damaged compressed masonry columns with composites based on fabrics of high-strength fibers and epoxy resin, or polymer-modified cement mixtures, belongs to novel, partially non-invasive and reversible progressive methods. The stabilizing and reinforcing effect of these fabrics significantly applies to masonry structures under concentric compressive loading whose failure mechanism is characterized by the appearance and development of vertical tensile cracks accompanied by an increase in horizontal masonry strain. During the appearance of micro and hairline cracks (10-3 to 10-1 mm), the effect of non-pre-stressed wrapping composite is very small. The favorable effect of passive wrapping is only intensively manifested after the appearance of cracks (10-1 mm and bigger) at higher loading levels. In the case of "optimum" reinforcement of a masonry column, the experimental research showed an increase in vertical displacements δy (up to 247%), horizontal displacements δx (up to 742%) and ultimate load-bearing capacity (up to 136%) compared to the values reached in unreinforced masonry columns. In the case of masonry structures in which no intensive "bed joint filler⁻masonry unit" interaction occurs, e.g., in regular coursed masonry with little differences in the mechanical characteristics of masonry units and the binder, the reinforcing effect of the fabric applies only partially.
See more in PubMed
Saadatmanesh H. Extending service life of concrete and masonry structures with fiber composites. Constr. Build. Mater. 1997;11:327–335. doi: 10.1016/S0950-0618(97)00054-8. DOI
Doran B., Koksal H.O., Turgay T. Nonlinear finite element modeling of rectangular/square concrete columns confined with FRP. Mater. Des. 2009;30:3066–3075. doi: 10.1016/j.matdes.2008.12.007. DOI
Wu Y.F., Jiang C. Effect of load eccentricity on the stress–strain relationship of FRP-confined concrete columns. Compos. Struct. 2012;98:228–241. doi: 10.1016/j.compstruct.2012.11.023. DOI
Corradi M., Borri A., Vignoli A. Strengthening techniques tested on masonry structures struck by the Umbrian-Marche earthquake of 1997–1998. Constr. Build. Mater. 2002;16:229–239. doi: 10.1016/S0950-0618(02)00014-4. DOI
Zhao T., Zhang C.J., Xie J. Experimental study on earthquake strengthening of brick walls with continuous carbon fiber sheet. Mason. Int. 2003;16:21–25.
Shrive N.G. The use of fiber reinforced polymers to improve seismic resistance of masonry. Constr. Build. Mater. 2006;20:269–277. doi: 10.1016/j.conbuildmat.2005.08.030. DOI
Eslami A., Ronagh H.R. Effect of FRP wrapping in seismic performance of RC buildings with and without special detailing—A case study. Compos. Part B. 2013;45:1265–1274. doi: 10.1016/j.compositesb.2012.09.031. DOI
Bruggi M., Milani G., Taliercio A. Design of the optimal fiber-reinforcement for masonry structures via topology optimization. Int. J. Solids Struct. 2013;50:2087–2106. doi: 10.1016/j.ijsolstr.2013.03.007. DOI
Luccioni B., Rougier V.C. In-plane retrofitting of masonry panels with fiber reinforced composite materials. Constr. Build. Mater. 2011;25:1772–1788. doi: 10.1016/j.conbuildmat.2010.11.088. DOI
Grande E., Imbimbo M., Sacco E. Finite element analysis of masonry panels strengthened with FRPs. Compos. Part B. 2013;45:1296–1309. doi: 10.1016/j.compositesb.2012.09.002. DOI
Corradi M., Grazini A., Borri A. Confinement of brick masonry columns with CFRP materials. Compos. Sci. Technol. 2007;67:1772–1783. doi: 10.1016/j.compscitech.2006.11.002. DOI
Faella C., Martinelli E., Paciello S., Camorani G., Aiello M.A., Micelli F., Nigro E. Masonry columns confined by composite materials: Experimental investigation. Compos. Part B. 2011;42:692–704. doi: 10.1016/j.compositesb.2011.02.001. DOI
Krevaikas T.D., Triantafillou T. Masonry confinement with fiber-reinforced polymers. J. Compos. Constr. 2005;9:128–135. doi: 10.1061/(ASCE)1090-0268(2005)9:2(128). DOI
Micelli F., de Lorenzis L., La Tegola A. FRP-confined masonry columns under axial loads: Analytical model and experimental results. Mason. Int. J. 2004;17:95–108.
Aiello M.A., Micelli F., Valente L. Structural upgrading of masonry columns by using composite reinforcements. J. Compos. Constr. 2007;11:650–658. doi: 10.1061/(ASCE)1090-0268(2007)11:6(650). DOI
Marcari G., Oliveira D.V., Fabbrocino G., Lourenço P.B. Shear capacity assessment of tuff panels strengthened with FRP diagonal layout. Compos. Part B. 2011;42:1956–1965. doi: 10.1016/j.compositesb.2011.05.031. DOI
Di Ludovico M., D’Ambra C., Prota A., Manfredi G. FRP confinement of tuff and clay brick columns: experimental study and assessment of analytical models. ASCE J. Compos. Constr. 2010;14:583–596. doi: 10.1061/(ASCE)CC.1943-5614.0000113. DOI
Micelli F., Di Ludovico M., Balsamo A., Manfredi G. Mechanical behavior of FRP-confined masonry by testing of full-scale columns. Mater. Struct. 2014;47:2081–2100. doi: 10.1617/s11527-014-0357-9. DOI
Camli U.S., Binici B. Strength of carbon fiber reinforced polymers bonded to concrete and masonry. Constr. Build. Mater. 2007;21:1431–1446. doi: 10.1016/j.conbuildmat.2006.07.003. DOI
Faella C., Camorani G., Martinelli E., Paciello S., Perri F. Bond behavior of FRP strips glued on masonry: Experimental investigation and empirical formulation. Constr. Build. Mater. 2013;31:353–363. doi: 10.1016/j.conbuildmat.2011.12.100. DOI
Garbin E., Panizza M., Valluzzi M.R. Experimental assessment of bond behavior of fiber-reinforced polymers on brick masonry. Struct. Eng. Int. 2010;20:392–399. doi: 10.2749/101686610793557582. DOI
Carrara P., Ferretti D., Freddi F. Debonding behavior of ancient masonry elements strengthened with CFRP sheets. Compos. Part B. 2013;45:800–810. doi: 10.1016/j.compositesb.2012.04.029. DOI
Grande E., Imbimbo M., Sacco E. Bond behavior of CFRP laminates glued on clay bricks: Experimental and numerical study. Compos. Part B. 2011;42:330–340. doi: 10.1016/j.compositesb.2010.09.020. DOI
Fedele R., Milani G. Three-dimensional effects induced by FRP-from-masonry delamination. Compos. Struct. 2011;93:1819–1831. doi: 10.1016/j.compstruct.2011.01.022. DOI
Capozucca R. Experimental FRP/SRP–historic masonry delamination. Compos. Struct. 2010;92:891–903. doi: 10.1016/j.compstruct.2009.09.029. DOI
Capozucca R. Effects of mortar layers in the delamination of GFRP bonded to historic masonry. Compos. Part B. 2013;44:639–649. doi: 10.1016/j.compositesb.2012.02.012. DOI
Ghiassi B., Oliveira D.V., Lourenço P.B., Marcari G. Numerical study of the role of mortar joints in the bond behavior of FRP-strengthened masonry. Compos. Part B. 2013;46:21–30. doi: 10.1016/j.compositesb.2012.10.017. DOI
Kashyap J., Willis C.R., Griffith M.C., Inghamb J.M., Masia M.J. Debonding resistance of FRP-to-clay brick masonry joints. Eng. Struct. 2012;41:186–198. doi: 10.1016/j.engstruct.2012.03.032. DOI
Kwiecien A. Stiff and flexible adhesives bonding CFRP to masonry substrates—Investigated in pull-off test and Single-Lap test. Arch. Civ. Mech. Eng. 2012;12:228–239. doi: 10.1016/j.acme.2012.03.015. DOI
ČSN EN 1996–1-1 Eurocode 6: Design of Masonry Structures—Part 1–1: General Rules for Reinforced and Unreinforced Masonry Structures. Czech Office for Standards, Metrology and Testing (UNMZ); Prague, Czech Republic: 2013.
ČSN 731101 Design of Masonry Structures (Change B) Czech Office for Standards, Metrology and Testing (UNMZ); Prague, Czech Republic: 2013.
CNR-DT 200 R1/2013 . Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures, Revision 1. Italian Council of Research (CNR); Rome, Italy: 2014.
ISO 13822:2010 Bases for Design of Structures—Assessment of Existing Structures. International Organization for Standardization; Geneva, Switzerland: 2010.
Abaqus Unified FEA—Simulia Package. [(accessed on 15 August 2015)]. Available online: https://www.3ds.com/fileadmin/PRODUCTS/SIMULIA/PDF/brochures/simulia-abaqus-unified-fea-brochure.pdf.
FEAT2000. SMARTsoft s.r.o.; Prague, Czech Republic: 2000. version 3.