tau-Fluvalinate and other pesticide residues in honey bees before overwintering

. 2019 Dec ; 75 (12) : 3245-3251. [epub] 20190517

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30983110

Grantová podpora
RO0418 Ministerstvo Zemědělství
QJ1530148 Národní Agentura pro Zemědělský Výzkum
TA04020267 Technologická Agentura České Republiky

BACKGROUND: Pesticides have often been linked to honey bee colony losses, which occur mainly over winter. In this study, we investigated residues in nine colonies at a model agricultural research site during the period before wintering. Moreover, we applied the acaricide tau-fluvalinate to the colonies via a strip formulation. The pesticide content was determined by UHPLC-QqQ-MS/MS in bees from brood comb initially collected in mid-September immediately prior to the start of tau-fluvalinate treatment and 30 later at the time of tau-fluvalinate strip removal. RESULTS: In addition to commonly analyzed pesticides, we detected two plant growth regulators, chlormequat and metazachlor, in the bee colonies. Whereas thiacloprid, chlormequat and acetamiprid decreased after 30 days and contributed considerably to differences between sample time points, other pesticides appeared to be rather stable. Interestingly, we identified diazinon, which has been banned in the European Union since 2007. The residues of methiocarb sulfoxide and imidacloprid-urea in the absence of their parent compounds indicate historical environmental contamination that can be identified by the detection of residues in a bee colony. tau-Fluvalinate was detected only after the 30-day treatment at an average (± SD) concentration of 1.29 ± 1.93 ng/bee, ranging from 0.06 to 7.13 ng/bee. CONCLUSION: The multidimensional behavior of pesticides in a bee colony was indicated. Although the research area is used for agriculture, the measured pesticide level was relatively low. The recorded concentrations of tau-fluvalinate should not be dangerous to bees, as the values were ∼ 200-5000-fold lower than the reported median lethal dose (LD50 ) values. © 2019 Society of Chemical Industry.

Zobrazit více v PubMed

Bernal J, Garrido-Bailon E, del Nozal MJ, Gonzalez-Porto AV, Martin-Hernandez R, Diego JC et al., Overview of pesticide residues in stored pollen and their potential effect on bee colony (Apis mellifera) losses in Spain. J Econ Entomol 103:1964-1971 (2010).

Johnson RM, Dahlgren L, Siegfried BD and Ellis MD, Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS One 8:e54092 (2013).

Johnson RM, Ellis MD, Mullin CA and Frazier M, Pesticides and honey bee toxicity - USA. Apidologie 41:312-331 (2010).

Sanchez-Bayo F and Goka K, Pesticide residues and bees - a risk assessment. PLoS One 9:e94482 (2014).

van der Zee R, Pisa L, Andonov S, Brodschneider R, Charriere J-D, Chlebo R et al., Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008-9 and 2009-10. J Apic Res 51:100-114 (2012).

Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, vanEngelsdorp D et al., High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5:e9754 (2010).

Henry M, Beguin M, Requier F, Rollin O, Odoux J-F, Aupinel P et al., A common pesticide decreases foraging success and survival in honey bees. Science 336:348-350 (2012).

Krupke CH, Hunt GJ, Eitzer BD, Andino G and Given K, Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One 7:e29268 (2012).

Bonzini S, Tremolada P, Bernardinelli I, Colombo M and Vighi M, Predicting pesticide fate in the hive (part 1): experimentally determined τ-fluvalinate residues in bees, honey and wax. Apidologie 42:378-390 (2011).

Lindberg CM, Melathopoulos AP and Winston ML, Laboratory evaluation of miticides to control Varroa jacobsoni (Acari: Varroidae), a honey bee (Hymenoptera: Apidae) parasite. J Econ Entomol 93:189-198 (2000).

Gregorc A, Alburaki M, Sampson B, Knight PR and Adamczyk J, Toxicity of selected acaricides to honey bees (Apis mellifera) and Varroa (Varroa destructor Anderson and Trueman) and their use in controlling Varroa within honey bee colonies. Insects 9:E55 (2018).

Haarmann T, Spivak M, Weaver D, Weaver B and Glenn T, Effects of fluvalinate and coumaphos on queen honey bees (Hymenoptera: Apidae) in two commercial queen rearing operations. J Econ Entomol 95:28-35 (2002).

Frost EH, Shutler D and Hillier NK, Effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival. J Exp Biol 216:2931-2938 (2013).

Bogdanov S, Kilchenmann V and Imdorf A, Acaricide residues in some bee products. J Apic Res 37:57-67 (1998).

Bogdanov S, Contaminants of bee products. Apidologie 37:1-18 (2006).

Tsigouri AD, Menkissoglu-Spiroudi U and Thrasyvoulou A, Study of tau-fluvalinate persistence in honey. Pest Manag Sci 57:467-471 (2001).

Tsigouri AD, Menkissoglu-Spiroudi U, Thrasyvoulou A and Diamantidis G, Fluvalinate residues in Greek honey and beeswax. Apiacta 38:50-53 (2003).

Wilmart O, Legreve A, Scippo M-L, Reybroeck W, Urbain B, de Graaf DC et al., Residues in beeswax: a health risk for the consumer of honey and beeswax? J Agric Food Chem 64:8425-8434 (2016).

Balayannis PG, Gas chromatographic determination of coumaphos and tau-fluvalinate residues in royal jelly produced under commercial conditions. J Apic Res 40:71-78 (2001).

Mozes-Koch R, Slabezki Y, Efrat H, Kalev H, Kamer Y, Yakobson BA et al., First detection in Israel of fluvalinate resistance in the Varroa mite using bioassay and biochemical methods. Exp Appl Acarol 24:35-43 (2000).

Kamler M, Nesvorna M, Stara J, Erban T and Hubert J, Comparison of tau-fluvalinate, acrinathrin, and amitraz effects on susceptible and resistant populations of Varroa destructor in a vial test. Exp Appl Acarol 69:1-9 (2016).

Milani N, The resistance of Varroa jacobsoni Oud. to acaricides. Apidologie 30:229-234 (1999).

Milani N, The resistance of Varroa jacobsoni Oud to pyrethroids: a laboratory assay. Apidologie 26:415-429 (1995).

Colin ME, Vandame R, Jourdam P and Di Pasquale S, Fluvalinate resistance of Varroa jacobsoni Oudemans (Acari: Varroidae) in Mediterranean apiaries of France. Apidologie 28:375-384 (1997).

Gracia-Salinas MJ, Ferrer-Dufol M, Latorre-Castro E, Monero-Manera C, Castillo-Hernandez JA, Lucientes-Curd J et al., Detection of fluvalinate resistance in Varroa destructor in Spanish apiaries. J Apic Res 45:101-105 (2006).

Wang R, Liu Z, Dong K, Elzen PJ, Pettis J and Huang Z, Association of novel mutations in a sodium channel gene with fluvalinate resistance in the mite, Varroa destructor. J Apic Res 41:17-25 (2002).

Liu Z, Tan J, Huang ZY and Dong K, Effect of a fluvalinate-resistance-associated sodium channel mutation from Varroa mites on cockroach sodium channel sensitivity to fluvalinate, a pyrethroid insecticide. Insect Biochem Mol Biol 36:885-889 (2006).

Hubert J, Nesvorna M, Kamler M, Kopecky J, Tyl J, Titera D et al., Point mutations in the sodium channel gene conferring tau-fluvalinate resistance in Varroa destructor. Pest Manag Sci 70:889-894 (2014).

Gonzalez-Cabrera J, Bumann H, Rodriguez-Vargas S, Kennedy PJ, Krieger K, Altreuther G et al., A single mutation is driving resistance to pyrethroids in European populations of the parasitic mite, Varroa destructor. J Pest Sci 91:1137-1144 (2018).

Gonzalez-Cabrera J, Rodriguez-Vargas S, Davies TGE, Field LM, Schmehl D, Ellis JD et al., Novel mutations in the voltage-gated sodium channel of pyrethroid-resistant Varroa destructor populations from the Southeastern USA. PLoS One 11:e0155332 (2016).

Gonzalez-Cabrera J, Davies TGE, Field LM, Kennedy PJ and Williamson MS, An amino acid substitution (L925V) associated with resistance to pyrethroids in Varroa destructor. PLoS One 8:e82941 (2013).

Cabras P, Floris I, Garau VL, Melis M and Prota R, Fluvalinate content of Apistan® strips during treatment and efficacy in colonies containing sealed worker brood. Apidologie 28:91-96 (1997).

BRI. GABON PF 90 mg prouzky do ulu: pribalova informace [GABON PF 90 mg hive strips: package leaflet]. Bee Research Institute at Dol (VUVc), Dol (2012). Available: http://www.beedol.cz/wp-content/uploads/2012/03/Gabon-PF_CZ.pdf (in Czech) [29 October 2018].

Pfeiffer KJ and Crailsheim K, Drifting of honeybees. Insect Soc 45:151-167 (1998).

BRI. VARIDOL 125 mg/ml roztok k lecebnemu osetreni vcel: pribalova informace [VARIDOL 125 mg/mL solution for therapeutic treatment of bees: package leaflet]. Bee Research Institute at Dol (VUVc), Dol (2012). Available: http://www.beedol.cz/wp-content/uploads/2012/03/PI_Varidol-125-mg-ml.pdf (in Czech) [29 October 2018].

ISO. ISO/IEC 17025:2005. General requirements for the competence of testing and calibration laboratories. Vernier, International Organization for Standardization (ISO) (2005).

Anastassiades M, Lehotay SJ, Stajnbaher D and Schenck FJ, Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412-431 (2003).

Clarke KR, Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117-143 (1993).

Hammer O, Harper DAT and Ryan PD, PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4 (2001). Available: http://palaeo-electronica.org/2001_1/past/issue1_01.htm [29 October 2018].

Macedo PA, Wu J and Ellis MD, Using inert dusts to detect and assess Varroa infestations in honey bee colonies. J Apic Res 41:3-7 (2002).

Stara J, Pekar S, Nesvorna M, Erban T, Vinsova H, Kopecky J et al., Detection of tau-fluvalinate resistance in the mite Varroa destructor based on the comparison of vial test and PCR-RFLP of kdr mutation in sodium channel gene. Exp Appl Acarol 77:161-171 (2019).

EPA. Reregistration eligibility decision for tau-fluvalinate. United States Environmental Protection Agency (EPA), Prevention, Pesticides and Toxic Substances, Washington, DC (2005). Available: https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_PC-109302_1-Sep-05.pdf [29 October 2018].

Santiago GP, Otero-Colina G, Sanchez DM, Guzman MER and Vandame R, Comparing effects of three acaricides on Varroa jacobsoni (Acari: Varroidae) and Apis mellifera (Hymenoptera: Apidae) using two application techniques. Fla Entomol 83:468-476 (2000).

Johnson RM, Pollock HS and Berenbaum MR, Synergistic interactions between in-hive miticides in Apis mellifera. J Econ Entomol 102:474-479 (2009).

Milani N and Della Vedova G, Decline in the proportion of mites resistant to fluvalinate in a population of Varroa destructor not treated with pyrethroids. Apidologie 33:417-422 (2002).

Sudo M, Takahashi D, Andow DA, Suzuki Y and Yamanaka T, Optimal management strategy of insecticide resistance under various insect life histories: heterogeneous timing of selection and interpatch dispersal. Evol Appl 11:271-283 (2017).

Fairbrother A, Purdy J, Anderson T and Fell R, Risks of neonicotinoid insecticides to honeybees. Environ Toxicol Chem 33:719-731 (2014).

Lundin O, Rundlof M, Smith HG, Fries I and Bommarco R, Neonicotinoid insecticides and their impacts on bees: a systematic review of research approaches and identification of knowledge gaps. PLoS One 10:e0136928 (2015).

Holder PJ, Jones A, Tyler CR and Cresswell JE, Fipronil pesticide as a suspect in historical mass mortalities of honey bees. Proc Natl Acad Sci U S A 115:13033-13038 (2018).

European Commission (EC), Commission Implementing Regulation (EU) No 485/2013 of 24 May 2013 amending Implementing Regulation (EU) No 540/2011, as regards the conditions of approval of the active substances clothianidin, thiamethoxam and imidacloprid, and prohibiting the use and sale of seeds treated with plant protection products containing those active substances. Off J Eur Union L 139/12-26 (2013) Available: http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1484755697880&uri=CELEX:32013R0485 [29 October 2018].

European Commission (EC), Commission Regulations (EU) 2018/783-785 of 29 May 2018. Off J Eur Union L 132/31-44 (2018). Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2018:132:TOC [29 October 2018].

European Food Safety Authority (EFSA), Conclusion on the peer review of the pesticide risk assessment for bees for the active substance thiamethoxam. EFSA J 11:3067 (2013).

Suchail S, De Sousa G, Rahmani R and Belzunces LP, In vivo distribution and metabolisation of 14C-imidacloprid in different compartments of Apis mellifera L. Pest Manag Sci 60:1056-1062 (2004).

Erban T, Sopko B, Talacko P, Harant K, Kadlikova K, Halesova T et al., Chronic exposure of bumblebees to neonicotinoid imidacloprid suppresses the entire mevalonate pathway and fatty acid synthesis. J Proteomics 196:69-80 (2019).

Seifrtova M, Halesova T, Sulcova K, Riddellova K and Erban T, Distributions of imidacloprid, imidacloprid-olefin and imidacloprid-urea in green plant tissues and roots of rapeseed (Brassica napus) from artificially contaminated potting soil. Pest Manag Sci 73:1010-1016 (2017).

El Hassani AK, Dacher M, Gary V, Lambin M, Gauthier M and Armengaud C, Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch Environ Contam Toxicol 54:653-661 (2008).

Tison L, Holtz S, Adeoye A, Kalkan O, Irmisch NS, Lehmann N et al., Effects of sublethal doses of thiacloprid and its formulation Calypso® on the learning and memory performance of honey bees. J Exp Biol 220:3695-3705 (2017).

Tison L, Hahn M-L, Holtz S, Rossner A, Greggers U, Bischoff G et al., Honey bees' behavior is impaired by chronic exposure to the neonicotinoid thiacloprid in the field. Environ Sci Technol 50:7218-7227 (2016).

Ramachandra Reddy A, Reddy KR and Hodges HF, Mepiquat chloride (PIX)-induced changes in photosynthesis and growth of cotton. Plant Growth Regul 20:179-183 (1996).

Green CF, Modifications to the growth and development of cereals using chlorocholine chloride in the absence of lodging: a synopsis. Field Crop Res 14:117-133 (1986).

Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R and vanEngelsdorp D, Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8:e70182 (2013).

European Commission (EC), Commission Implementing Regulation (EU) No 187/2014 of 26 February 2014 amending Implementing Regulation (EU) No 540/2011 as regards the conditions of approval of the active substance methiocarb. Off J Eur Union L 57/24-26 (2014) Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1539622839919&uri=CELEX:32014R0187 [29 October 2018].

European Commission (EC), 2007/393/EC: Commission decision of 6 June 2007 concerning the non-inclusion of diazinon in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing that substance (notified under document number C(2007) 2339). Off J Eur Union L 148/9-10 (2007) Available: https://eur-lex.europa.eu/eli/dec/2007/393/oj [29 October 2018].

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...