pesticide resistance Dotaz Zobrazit nápovědu
Persistent use of pesticides and animal manure in agricultural soils inadvertently introduced heavy metals and antibiotic/antibiotic resistance genes (ARGs) into the soil with deleterious consequences. The microbiome and heavy metal and antibiotic resistome of a pesticide and animal manure inundated agricultural soil (SL6) obtained from a vegetable farm at Otte, Eiyenkorin, Kwara State, Nigeria, was deciphered via shotgun metagenomics and functional annotation of putative ORFs (open reading frames). Structural metagenomics of SL6 microbiome revealed 29 phyla, 49 classes, 94 orders, 183 families, 366 genera, 424 species, and 260 strains with the preponderance of the phyla Proteobacteria (40%) and Actinobacteria (36%), classes Actinobacteria (36%), Alphaproteobacteria (18%), and Gammaproteobacteria (17%), and genera Kocuria (16%), Sphingobacterium (11%), and Brevundimonas (10%), respectively. Heavy metal resistance genes annotation conducted using Biocide and Metal Resistance Gene Database (BacMet) revealed the detection of genes responsible for the uptake, transport, detoxification, efflux, and regulation of copper, cadmium, zinc, nickel, chromium, cobalt, selenium, tungsten, mercury, and several others. ARG annotation using the Antibiotic Resistance Gene-annotation (ARG-ANNOT) revealed ARGs for 11 antibiotic classes with the preponderance of β-lactamases, mobilized colistin resistance determinant (mcr-1), macrolide-lincosamide-streptogramin (MLS), glycopeptide, and aminoglycoside resistance genes, among others. The persistent use of pesticide and animal manure is strongly believed to play a major role in the proliferation of heavy metal and antibiotic resistance genes in the soil. This study revealed that agricultural soils inundated with pesticide and animal manure use are potential hotspots for ARG spread and may accentuate the spread of multidrug resistant clinical pathogens.
- MeSH
- aminoglykosidy MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální geny MeSH
- beta-laktamasy genetika MeSH
- chrom MeSH
- dezinficiencia * MeSH
- glykopeptidy MeSH
- hnůj mikrobiologie MeSH
- kadmium MeSH
- kobalt MeSH
- kolistin MeSH
- linkosamidy MeSH
- makrolidy MeSH
- měď MeSH
- metagenomika MeSH
- mikrobiota * genetika MeSH
- nikl MeSH
- pesticidy * farmakologie MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- rtuť * MeSH
- selen * MeSH
- streptograminy MeSH
- wolfram MeSH
- zinek MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
WHO technical report series ; 818
62 s. : 5 tab., bibliogr.
- Klíčová slova
- vektory, nemoci, rezistence, insekticidy, nemoci tropické, metody zjišťovací, pesticidy - zbytky v prostředí životním - materiály WHO,
- Konspekt
- Veřejné zdraví a hygiena
- NLK Obory
- environmentální vědy
- toxikologie
- biologie
- zemědělství a potravinářství
- cestovní a tropická medicína
- NLK Publikační typ
- publikace WHO
An increasing demand for environmentally acceptable alternative for traditional pesticides provides an impetus to conceive new bio-based strategies in crop protection. Employing induced resistance is one such strategy, consisting of boosting the natural plant immunity. Upon infections, plants defend themselves by activating their immune mechanisms. These are initiated after the recognition of an invading pathogen via the microbe-associated molecular patterns (MAMPs) or other microbe-derived molecules. Triggered responses inhibit pathogen spread from the infected site. Systemic signal transport even enables to prepare, i.e. prime, distal uninfected tissues for more rapid and enhanced response upon the consequent pathogen attack. Similar defense mechanisms can be triggered by purified MAMPs, pathogen-derived molecules, signal molecules involved in plant resistance to pathogens, such as salicylic and jasmonic acid, or a wide range of other chemical compounds. Induced resistance can be also conferred by plant-associated microorganisms, including beneficial bacteria or fungi. Treatment with resistance inducers or beneficial microorganisms provides long-lasting resistance for plants to a wide range of pathogens. This study surveys current knowledge on resistance and its mechanisms provided by microbe-, algae- and plant-derived elicitors in different crops. The main scope deals with bacterial substances and fungus-derived molecules chitin and chitosan and algae elicitors, including naturally sulphated polysaccharides such as ulvans, fucans or carageenans. Recent advances in the utilization of this strategy in practical crop protection are also discussed.
WHO technical report series ; no. 655
82 s. : il.
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- epidemiologie
- infekční lékařství
WHO technical report series ; no. 585
88 s. : il.
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- infekční lékařství
- epidemiologie
The pollen beetle is a major pest of oilseed rape. Although various resistance mechanisms have been identified, such as kdr (mutation in the sodium channel) and metabolic resistance (CYP overexpression), other "hidden" factors also exist. Some studies have stressed the importance of epistasis as a genetic background. The combination of kdr and metabolic resistance appears to be unfavorable under field conditions in the absence of pesticide selection. The regulation of detoxification enzymes can play an important role, but we highlight different detoxification markers compared to those emphasized in other studies. We also stress the importance of studying the role of markers identified as pathogenesis-related protein 5-like (PR5; upregulated by insecticides) and highlight the role of RNA (DEAD-box) helicases (downregulated by insecticides). Thus, we suggest the importance of epigenetic drivers of resistance/tolerance to pesticides. The key results are similar to those of our previous study, in which deltamethrin treatment of the pollen beetle was also investigated by a proteogenomic approach. Indeed, the mechanism leading to resistance of the pollen beetle may be an innate mechanism that the pollen beetle can also employ in natural habitats, but under field conditions (pesticide exposure), this mechanism is used to survive in response to insecticides. SIGNIFICANCE: Pesticide resistance is a serious problem that hampers the successful production of crops. Understanding the mechanisms of insecticide resistance is highly important for successful pest control, especially when considering integrated pest management. Here, using a proteogenomic approach, we identified novel markers for understanding pollen beetle resistance to pesticides. In addition, future studies will reveal the role of these markers in the multiresistance of pollen beetle populations. We highlight that the proteins identified as PR5, which are known to occur in beetles and are similar to those in plants, may be responsible for tolerance to multiple stresses. In addition, our results indicate that the RNA helicases that exhibited changes in expression may be the epigenetic drivers of multiresistance. The nature of these changes remains an open question, and their relevance in different situations (responses to different stresses) in natural habitats in the absence of pesticides can be proposed.
- MeSH
- brouci * genetika MeSH
- insekticidy * farmakologie MeSH
- proteogenomika * MeSH
- pyl MeSH
- pyrethriny * farmakologie MeSH
- rezistence k insekticidům genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
WHO technical report series ; no. 737
87 s. : il.
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- epidemiologie
- infekční lékařství
Phenacoccus solenopsis is an economically important insect pest of different agronomic and horticultural field crops. In Pakistan, the cotton crop was severely attacked by P. solenopsis during 2007 and since then a varied group of insecticides are used by farmers to manage this pest. As a result, insecticide resistance has become a barrier in control of P. solenopsis. The current study was designed to explore the basics of genetics, realized heritability and possible genetic mechanisms of resistance against spirotetramat in P. solenopsis. Before selection, the wild population (Wild-Pop) showed 5.97-fold resistance when compared with lab-reared susceptible strain (Susceptible Lab-Pop). The P. solenopsis was selected with spirotetramat to 21 generations, called Spiro-SEL Pop, which showed 463.21-fold resistance as compared with the Susceptible Lab-Pop. The values of LC50 for F1 (Spiro-SEL Pop ♂ × Susceptible Lab-Pop ♀) and F1 (Spiro-SEL Pop ♀ × Susceptible Lab-Pop ♂) populations were statistically similar and values of dominance level were 0.42 and 0.54, respectively. Reciprocal crosses between Susceptible Lab-Pop and Spiro-SEL Pop showed that resistance was of autosomal in nature with incomplete dominant traits. According to the fit test, monogenic model estimation of the number of genes, which are responsible for the development of spirotetramat resistance in a population of P. solenopsis, showed that multiple genes are involved in controlling the resistance levels in tested strains of P. solenopsis. The value of heritability for resistance against spirotetramat was 0.13 in P. solenopsis. Our results suggested the presence of a metabolic-based resistance mechanism associated with the monooxygenases in P. solenopsis, while testing the synergism mechanism. These results will provide the baseline to design an effective control strategy to manage P. solenopsis in the field.
- MeSH
- aza sloučeniny farmakologie MeSH
- biotest MeSH
- Hemiptera účinky léků enzymologie metabolismus MeSH
- insekticidy farmakologie MeSH
- oxygenasy se smíšenou funkcí genetika metabolismus MeSH
- rezistence k insekticidům MeSH
- spirosloučeniny farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Pákistán MeSH
BACKGROUND: Sodium channels (SCs) in mites and insects are target sites for pesticides, including pyrethroids. Point mutations in the SC gene have been reported to change the structural conformation of the protein and its sensitivity to pesticides. To find mutations in the SC gene of the mite Varroa destructor (VmNa), the authors analysed the VmNa gene sequences available in GenBank and prepared specific primers for the amplification of two fragments containing the regions coding for (i) the domain II S4-S6 region (bp 2805-3337) and (ii) the domain III S4-3' terminus region (bp 4737-6500), as determined according to the VmNa cDNA sequence AY259834. RESULTS: Sensitive and resistant mite populations did not differ in the amino acid sequences of the III S4-3' terminus VmNa region. However, differences were found in the IIS4-IIS6 fragment. In the resistant population, the mutation C(3004) → G resulted in the substitution L(1002) → V (codon ctg → gtg) at the position equivalent to that of the housefly L925 in the domain II S5 helix. Additionally, the mutation F(1052) → L (codon ttc → ctc) at the position equivalent to that of the housefly F975 in the domain II P-loop connecting segments S5 and S6 was detected in both the resistant and sensitive populations. CONCLUSION: All individuals that survived the tau-fluvalinate treatment in the bioassay harboured the L(1002) → V mutation combined with the F(1052), while dead individuals from both the sensitive and resistant populations harboured mostly the L(1002) residue and either of the two residues at position 1052.
- MeSH
- fyziologická adaptace * MeSH
- léková rezistence genetika MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- nitrily toxicita MeSH
- pyrethriny toxicita MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sodíkové kanály genetika MeSH
- Varroidae účinky léků genetika fyziologie MeSH
- včely MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH