-
Je něco špatně v tomto záznamu ?
Metagenomic insights into the microbial community structure and resistomes of a tropical agricultural soil persistently inundated with pesticide and animal manure use
LB. Salam
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
- MeSH
- aminoglykosidy MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální geny MeSH
- beta-laktamasy genetika MeSH
- chrom MeSH
- dezinficiencia * MeSH
- glykopeptidy MeSH
- hnůj mikrobiologie MeSH
- kadmium MeSH
- kobalt MeSH
- kolistin MeSH
- linkosamidy MeSH
- makrolidy MeSH
- měď MeSH
- metagenomika MeSH
- mikrobiota * genetika MeSH
- nikl MeSH
- pesticidy * farmakologie MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- rtuť * MeSH
- selen * MeSH
- streptograminy MeSH
- wolfram MeSH
- zinek MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Persistent use of pesticides and animal manure in agricultural soils inadvertently introduced heavy metals and antibiotic/antibiotic resistance genes (ARGs) into the soil with deleterious consequences. The microbiome and heavy metal and antibiotic resistome of a pesticide and animal manure inundated agricultural soil (SL6) obtained from a vegetable farm at Otte, Eiyenkorin, Kwara State, Nigeria, was deciphered via shotgun metagenomics and functional annotation of putative ORFs (open reading frames). Structural metagenomics of SL6 microbiome revealed 29 phyla, 49 classes, 94 orders, 183 families, 366 genera, 424 species, and 260 strains with the preponderance of the phyla Proteobacteria (40%) and Actinobacteria (36%), classes Actinobacteria (36%), Alphaproteobacteria (18%), and Gammaproteobacteria (17%), and genera Kocuria (16%), Sphingobacterium (11%), and Brevundimonas (10%), respectively. Heavy metal resistance genes annotation conducted using Biocide and Metal Resistance Gene Database (BacMet) revealed the detection of genes responsible for the uptake, transport, detoxification, efflux, and regulation of copper, cadmium, zinc, nickel, chromium, cobalt, selenium, tungsten, mercury, and several others. ARG annotation using the Antibiotic Resistance Gene-annotation (ARG-ANNOT) revealed ARGs for 11 antibiotic classes with the preponderance of β-lactamases, mobilized colistin resistance determinant (mcr-1), macrolide-lincosamide-streptogramin (MLS), glycopeptide, and aminoglycoside resistance genes, among others. The persistent use of pesticide and animal manure is strongly believed to play a major role in the proliferation of heavy metal and antibiotic resistance genes in the soil. This study revealed that agricultural soils inundated with pesticide and animal manure use are potential hotspots for ARG spread and may accentuate the spread of multidrug resistant clinical pathogens.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22022931
- 003
- CZ-PrNML
- 005
- 20240416153050.0
- 007
- ta
- 008
- 221007s2022 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s12223-022-00970-9 $2 doi
- 035 __
- $a (PubMed)35415828
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Salam, Lateef Babatunde $u Department of Biological Sciences, Microbiology Unit, Elizade University, Ilara-Mokin, Ondo, Nigeria. babssalaam@yahoo.com $1 http://orcid.org/000000018353534X
- 245 10
- $a Metagenomic insights into the microbial community structure and resistomes of a tropical agricultural soil persistently inundated with pesticide and animal manure use / $c LB. Salam
- 520 9_
- $a Persistent use of pesticides and animal manure in agricultural soils inadvertently introduced heavy metals and antibiotic/antibiotic resistance genes (ARGs) into the soil with deleterious consequences. The microbiome and heavy metal and antibiotic resistome of a pesticide and animal manure inundated agricultural soil (SL6) obtained from a vegetable farm at Otte, Eiyenkorin, Kwara State, Nigeria, was deciphered via shotgun metagenomics and functional annotation of putative ORFs (open reading frames). Structural metagenomics of SL6 microbiome revealed 29 phyla, 49 classes, 94 orders, 183 families, 366 genera, 424 species, and 260 strains with the preponderance of the phyla Proteobacteria (40%) and Actinobacteria (36%), classes Actinobacteria (36%), Alphaproteobacteria (18%), and Gammaproteobacteria (17%), and genera Kocuria (16%), Sphingobacterium (11%), and Brevundimonas (10%), respectively. Heavy metal resistance genes annotation conducted using Biocide and Metal Resistance Gene Database (BacMet) revealed the detection of genes responsible for the uptake, transport, detoxification, efflux, and regulation of copper, cadmium, zinc, nickel, chromium, cobalt, selenium, tungsten, mercury, and several others. ARG annotation using the Antibiotic Resistance Gene-annotation (ARG-ANNOT) revealed ARGs for 11 antibiotic classes with the preponderance of β-lactamases, mobilized colistin resistance determinant (mcr-1), macrolide-lincosamide-streptogramin (MLS), glycopeptide, and aminoglycoside resistance genes, among others. The persistent use of pesticide and animal manure is strongly believed to play a major role in the proliferation of heavy metal and antibiotic resistance genes in the soil. This study revealed that agricultural soils inundated with pesticide and animal manure use are potential hotspots for ARG spread and may accentuate the spread of multidrug resistant clinical pathogens.
- 650 _2
- $a aminoglykosidy $7 D000617
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a antibakteriální látky $x farmakologie $7 D000900
- 650 _2
- $a kadmium $7 D002104
- 650 _2
- $a chrom $7 D002857
- 650 _2
- $a kobalt $7 D003035
- 650 _2
- $a kolistin $7 D003091
- 650 _2
- $a měď $7 D003300
- 650 12
- $a dezinficiencia $7 D004202
- 650 _2
- $a bakteriální geny $7 D005798
- 650 _2
- $a glykopeptidy $7 D006020
- 650 _2
- $a linkosamidy $7 D055231
- 650 _2
- $a makrolidy $7 D018942
- 650 _2
- $a hnůj $x mikrobiologie $7 D008372
- 650 12
- $a rtuť $7 D008628
- 650 _2
- $a metagenomika $7 D056186
- 650 12
- $a mikrobiota $x genetika $7 D064307
- 650 _2
- $a nikl $7 D009532
- 650 12
- $a pesticidy $x farmakologie $7 D010575
- 650 12
- $a selen $7 D012643
- 650 _2
- $a půda $x chemie $7 D012987
- 650 _2
- $a půdní mikrobiologie $7 D012988
- 650 _2
- $a streptograminy $7 D025361
- 650 _2
- $a wolfram $7 D014414
- 650 _2
- $a zinek $7 D015032
- 650 _2
- $a beta-laktamasy $x genetika $7 D001618
- 655 _2
- $a časopisecké články $7 D016428
- 773 0_
- $w MED00011005 $t Folia microbiologica $x 1874-9356 $g Roč. 67, č. 5 (2022), s. 707-719
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35415828 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20221007 $b ABA008
- 991 __
- $a 20240416153046 $b ABA008
- 999 __
- $a ok $b bmc $g 1845904 $s 1174217
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 67 $c 5 $d 707-719 $e 20220412 $i 1874-9356 $m Folia microbiologica $n Folia microbiol. (Prague) $x MED00011005
- LZP __
- $a Pubmed-20221007