Hierarchical PANI/NiCo-LDH Core-Shell Composite Networks on Carbon Cloth for High Performance Asymmetric Supercapacitor

. 2019 Apr 03 ; 9 (4) : . [epub] 20190403

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30987112

Grantová podpora
2016YFE0131200 National Key R&D Program of China
51702098 National Natural Science Foundation of China
18520744400 International Cooperation Project of Shanghai Municipal Science and Technology Committee
LTACH17015 Research Program supported by the Ministry of Education, Youth, and Sports of the Czech Republic.

In this work, a facile two-step strategy is adopted to construct hierarchical polyaniline/NiCo-layered double hydroxide (PANI/NiCo-LDH) core-shell composite nanofiber networks on carbon cloth (CC). Three-dimensional (3D) porous PANI nanofiber networks are firstly uniformly anchored on CC by in-situ oxidative polymerization, followed by growth of NiCo-LDH nanoflakes on the crosslinked PANI framework via electrochemical deposition. The morphology and electrochemical properties of PANI/NiCo-LDH composites are controlled by the deposition time of LDH. Benefiting from rapid electron transport and ion diffusion, the well-defined PANI/NiCo-LDH hierarchical composite with 200 s deposition of LDH delivers a large capacitance of 1845 F g-1 at 0.5 A g-1 and excellent cycling stability of 82% capacitance retention after 5000 cycles at a very high current density of 10.0 A g-1. Furthermore, an asymmetric supercapacitor (ASC) assembled with PANI/NiCo-LDH as a positive electrode and activated carbon (AC) as a negative electrode exhibits a high capacitance of 147.2 F g-1 in a potential range from 0 to 1.5 V and superior energy density of 46.0 Wh kg-1 at a power density of 351.6 W kg-1.

Zobrazit více v PubMed

Dong L., Xu C., Li Y., Huang Z.H., Kang F., Yang Q.H., Zhao X. Flexible electrodes and supercapacitors for wearable energy storage: A review by category. J. Mater. Chem. A. 2016;4:4659–4685. doi: 10.1039/C5TA10582J. DOI

Liu Y., Peng X. Recent advances of supercapacitors based on two-dimensional materials. Appl. Mater. Today. 2017;7:104–115. doi: 10.1016/j.apmt.2017.05.002. DOI

Choudhary N., Li C., Moore J., Nagaiah N., Zhai L., Jung Y., Thomas J. Asymmetric supercapacitor electrodes and devices. Adv. Mater. 2017;29:1605336. doi: 10.1002/adma.201605336. PubMed DOI

Meng Q., Cai K., Chen Y., Chen L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy. 2017;36:268–285. doi: 10.1016/j.nanoen.2017.04.040. DOI

Liu C., Li F., Ma L.P., Cheng H.M. Advanced materials for energy storage. Adv. Mater. 2010;22:28–62. doi: 10.1002/adma.200903328. PubMed DOI

Strauss V., Marsh K., Kowal M.D., El-Kady M., Kaner R.B. A Simple Route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 2018;30:1704449. doi: 10.1002/adma.201704449. PubMed DOI

Dong S., He X., Zhang H., Xie X., Yu M., Yu C., Xiao N., Qiu J. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. J. Mater. Chem. A. 2018;6:15954–15960. doi: 10.1039/C8TA04080J. DOI

Zheng W., Lv R., Na B., Liu H., Jin T., Yuan D. Nanocellulose-mediated hybrid polyaniline electrodes for high performance flexible supercapacitors. J. Mater. Chem. A. 2017;5:12969–12976. doi: 10.1039/C7TA01990D. DOI

Zhou Y., Hu X., Shang Y., Hua C., Song P., Li X., Zhang Y., Cao A. Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers. RSC Adv. 2016;6:62062–62070. doi: 10.1039/C6RA07297F. DOI

Xiong D., Li X., Bai Z., Li J., Shan H., Fan L., Long C., Li D., Lu X. Rational design of hybrid Co3O4/graphene films: Free-standing flexible electrodes for high performance supercapacitors. Electrochim. Acta. 2018;259:338–347. doi: 10.1016/j.electacta.2017.10.160. DOI

Xing L., Dong Y., Hu F., Wu X., Umaret A. Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors. Dalton Trans. 2018;47:5687–5694. doi: 10.1039/C8DT00750K. PubMed DOI

Gao Z., Song N., Li X. Microstructural design of hybrid CoO@NiO and graphene nano-architectures for flexible high performance supercapacitors. J. Mater. Chem. A. 2015;3:14833–14844. doi: 10.1039/C5TA03057A. DOI

Eskusson J., Rauwel P., Nerut J., Jänes A. A hybrid capacitor based on Fe3O4-graphene nanocomposite/few-layer graphene in different aqueous electrolytes. J. Electrochem. Soc. 2016;163:A2768–A2775. doi: 10.1149/2.1161613jes. DOI

Kim G., Kang J., Choe G., Yim S. Enhanced energy density of supercapacitors using hybrid electrodes based on Fe2O3 and MnO2 nanoparticles. Int. J. Electrochem. Sci. 2017;12:10015–10022. doi: 10.20964/2017.11.44. DOI

Wang T., Zhang S., Yan X., Yu M., Wang L., Bell J., Wang H. 2-Methylimidazole-derived Ni-Co layered double hydroxide nanosheets as high rate capability and high energy density storage material in hybrid supercapacitors. ACS Appl. Mater. Interfaces. 2017;9:15510–15524. doi: 10.1021/acsami.7b02987. PubMed DOI

Gao L., Surjadi J.U., Cao K., Zhang H., Li P., Su S., Jiang C., Song J., Sun D., Lu Y. Flexible fiber-shaped supercapacitor based on nickel-cobalt double hydroxide and pen ink electrodes on metallized carbon fiber. ACS Appl. Mater. Interfaces. 2017;9:5409–5418. doi: 10.1021/acsami.6b16101. PubMed DOI

Li R., Hu Z., Shao X., Cheng P., Li S., Yu W., Lin W., Yuan D. Large scale synthesis of NiCo layered double hydroxides for superior asymmetric electrochemical capacitor. Sci. Rep. 2016;6:18737. doi: 10.1038/srep18737. PubMed DOI PMC

Li T., Li G., Li L., Liu L., Xu Y., Ding H., Zhang T. Large-scale self-assembly of 3D flower-like hierarchical Ni/Co-LDHs microspheres for high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 2016;8:2562–2572. doi: 10.1021/acsami.5b10158. PubMed DOI

Nagaraju G., Raju G.S., Co Y.H., Yu J.S. Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: A cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale. 2016;8:812–825. doi: 10.1039/C5NR05643H. PubMed DOI

Han J., Dou Y., Zhao J., Wei M., Evans D.G., Duan X. Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage. Small. 2013;9:98–106. doi: 10.1002/smll.201201336. PubMed DOI

Han B., Cheng G., Zhang E., Zhang L., Wang X. Three dimensional hierarchically porous ZIF-8 derived carbon/LDH core-shell composite for high performance supercapacitors. Electrochim. Acta. 2018;263:391–399. doi: 10.1016/j.electacta.2017.12.175. DOI

Shakir I., Shahid M., Rana U.A., Nashef I.M.A., Hussain R. Nickel–Cobalt layered double hydroxide anchored zinc oxide nanowires grown on carbon fiber cloth for high-performance flexible pseudocapacitive energy storage devices. Electrochim. Acta. 2014;129:28–32. doi: 10.1016/j.electacta.2014.02.082. DOI

Chen H., Cai F., Kang Y., Zeng S., Chen M., Li Q. Facile assembly of Ni-Co hydroxide nanoflakes on carbon nanotube network with highly electrochemical capacitive performance. ACS Appl. Mater. Interfaces. 2014;6:19630–19637. doi: 10.1021/am5041576. PubMed DOI

Li X., Shen J., Sun W., Hong X., Wang R., Zhao X., Yan X. A super-high energy density asymmetric supercapacitor based on 3D core–shell structured NiCo-layered double hydroxide@carbon nanotube and activated polyaniline-derived carbon electrodes with commercial level mass loading. J. Mater. Chem. A. 2015;3:13244–13253. doi: 10.1039/C5TA01292A. DOI

Liang H., Lin J., Jia L.H., Chen S., Qi J., Cao J., Lin T., Fei W., Feng J. Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor. J. Power Sources. 2018;378:248–254. doi: 10.1016/j.jpowsour.2017.12.046. DOI

Wang X., Xu M., Fu Y., Wang S., Yang T., Jiao K. A highly conductive and hierarchical PANI micro/nanostructure and its supercapacitor application. Electrochim. Acta. 2016;222:701–708. doi: 10.1016/j.electacta.2016.11.026. DOI

Zhou K., He Y., Xu Q., Zhang Q., Zhou A., Lu Z., Yang L., Jiang Y., Ge D., Liu X.Y., et al. A hydrogel of ultrathin pure polyaniline nanofibers: Oxidant-templating preparation and supercapacitor application. ACS Nano. 2018;12:5888–5894. doi: 10.1021/acsnano.8b02055. PubMed DOI

Zhang H., Dai Y., Zhang H., Wang W., Huang Q., Chen Y., Pu L. Synthesis and electrochemical measurement of three dimensional carbon nanofibers/Co3O4-polyaniline composites as supercapacitor electrode materials in neutral electrolyte. Int. J. Electrochem. Sci. 2016;11:6279–6286. doi: 10.20964/2016.07.99. DOI

Hai Z., Gao L., Zhang Q., Xu H., Cui D., Zhang Z., Tsoukalas D., Tang J., Yan S., Xue C. Facile synthesis of core-shell structured PANI-Co3O4 nanocomposites with superior electrochemical performance in supercapacitors. Appl. Surf. Sci. 2016;361:57–62. doi: 10.1016/j.apsusc.2015.11.171. DOI

Pan L., Yu G., Zhai D., Lee H.R., Zhao W., Liu N., Wang H., Tee B., Shi Y., Cui Y., et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA. 2012;109:9287–9292. doi: 10.1073/pnas.1202636109. PubMed DOI PMC

Shao M., Li Z., Zhang R., Ning F., Wei M., Evans D.G., Duan X. Hierarchical conducting polymer@clay core-shell arrays for flexible all-solid-state supercapacitor devices. Small. 2015;11:3530–3538. doi: 10.1002/smll.201403421. PubMed DOI

Ning J., Zhang T., He Y., Jia C., Saha P., Cheng Q. Co3O4@CoS core-shell nanosheets on carbon cloth for high performance supercapacitor electrodes. Materials. 2017;10:608. doi: 10.3390/ma10060608. PubMed DOI PMC

Yang M., Cheng H., Gu Y., Sun Z., Hu J., Cao L., Lv F., Li M., Wang W., Wang Z., et al. Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors. Nano Res. 2015;8:2744–2754. doi: 10.1007/s12274-015-0781-3. DOI

Jin L., Jiang Y., Zhang M., Li H., Xiao L., Li M., Ao Y. Oriented polyaniline nanowire arrays grown on dendrimer (PAMAM) functionalized multiwalled carbon nanotubes as supercapacitor electrode materials. Sci. Rep. 2018;8:6268. doi: 10.1038/s41598-018-24265-7. PubMed DOI PMC

Cai X., Shen X., Ma L., Ji Z., Xu C., Yuan A. Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor. Chem. Eng. J. 2015;268:251–259. doi: 10.1016/j.cej.2015.01.072. DOI

Xie L., Hu Z., Lv C., Sun G., Wang J., Li Y., He H., Wang J., Li K. CoxNi1−x double hydroxide nanoparticles with ultrahigh specific capacitances as supercapacitor electrode materials. Electrochim. Acta. 2012;78:205–211. doi: 10.1016/j.electacta.2012.05.145. DOI

Liu X.B., Wu Z., Yin Y. Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors. Chem. Eng. J. 2017;323:330–339. doi: 10.1016/j.cej.2017.04.115. DOI

Brousse T., Bélanger D., Long J.W. To be or not to be pseudocapacitive. J. Electrochem. Soc. 2015;162:5185–5189. doi: 10.1149/2.0201505jes. DOI

Cao J., Li L., Xi Y., Li J., Pan X., Chen D., Han W. Core-shell structural PANI-derived carbon@Co-Ni LDH electrode for high-performance asymmetric supercapacitors. Sustain. Energy Fuels. 2018;2:1350–1355. doi: 10.1039/C8SE00123E. DOI

Yu C., Yang J., Zhao C., Fan X., Wang G., Qiu J. Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: Understanding the role of nano-structured carbon. Nanoscale. 2014;6:3097–3104. doi: 10.1039/C3NR05477B. PubMed DOI

Bai X., Liu Q., Lu Z., Liu J., Chen R., Li R., Song D., Jing X., Liu P., Wang J. Rational design of sandwiched Ni-Co layered double hydroxides hollow nanocages/graphene derived from metal–organic framework for sustainable energy storage. ACS Sustain. Chem. Eng. 2017;5:9923–9934. doi: 10.1021/acssuschemeng.7b01879. DOI

Li H., Musharavati F., Zalenezhad E., Chen X., Hui K.N., Hui K.S. Electrodeposited NiCo layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors. Electrochim. Acta. 2018;261:178–187. doi: 10.1016/j.electacta.2017.12.139. DOI

Chen Y., Pang W.K., Bai H., Zhou T., Liu Y., Li S., Guo Z. Enhanced structural stability of nickel-cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes. Nano Lett. 2016;17:429–436. doi: 10.1021/acs.nanolett.6b04427. PubMed DOI

Huang C., Teng H. Influence of carbon nanotube grafting on the impedance behavior of activated carbon capacitors. J. Electrochem. Soc. 2008;155:739–744. doi: 10.1149/1.2965503. DOI

Liu Y., Teng X., Mi Y., Chen Z. A new architecture design of Ni-Co LDH-based pseudocapacitors. J. Mater. Chem. A. 2017;5:24407–24415. doi: 10.1039/C7TA07795E. DOI

Li Z., Xu Z., Wang H., Ding J., Zahiri B., Holt C., Tan X., Mitlin D. Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ. Sci. 2014;7:1708–1718. doi: 10.1039/C3EE43979H. DOI

Chen H., Jiang J., Zhang L., Xia D., Zhao Y., Guo D., Qi T., Wan H. In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J. Power Sources. 2014;254:249–257. doi: 10.1016/j.jpowsour.2013.12.092. DOI

Wang X., Sumboja A., Lin M., Yan J., Lee P.S. Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: A hybrid material for an asymmetric supercapacitor device. Nanoscale. 2012;4:7266–7272. doi: 10.1039/c2nr31590d. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...