Hierarchical PANI/NiCo-LDH Core-Shell Composite Networks on Carbon Cloth for High Performance Asymmetric Supercapacitor
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2016YFE0131200
National Key R&D Program of China
51702098
National Natural Science Foundation of China
18520744400
International Cooperation Project of Shanghai Municipal Science and Technology Committee
LTACH17015
Research Program supported by the Ministry of Education, Youth, and Sports of the Czech Republic.
PubMed
30987112
PubMed Central
PMC6523088
DOI
10.3390/nano9040527
PII: nano9040527
Knihovny.cz E-zdroje
- Klíčová slova
- core-shell structure, electrochemical performance, layered double hydroxides, polyaniline nanofibers, supercapacitor,
- Publikační typ
- časopisecké články MeSH
In this work, a facile two-step strategy is adopted to construct hierarchical polyaniline/NiCo-layered double hydroxide (PANI/NiCo-LDH) core-shell composite nanofiber networks on carbon cloth (CC). Three-dimensional (3D) porous PANI nanofiber networks are firstly uniformly anchored on CC by in-situ oxidative polymerization, followed by growth of NiCo-LDH nanoflakes on the crosslinked PANI framework via electrochemical deposition. The morphology and electrochemical properties of PANI/NiCo-LDH composites are controlled by the deposition time of LDH. Benefiting from rapid electron transport and ion diffusion, the well-defined PANI/NiCo-LDH hierarchical composite with 200 s deposition of LDH delivers a large capacitance of 1845 F g-1 at 0.5 A g-1 and excellent cycling stability of 82% capacitance retention after 5000 cycles at a very high current density of 10.0 A g-1. Furthermore, an asymmetric supercapacitor (ASC) assembled with PANI/NiCo-LDH as a positive electrode and activated carbon (AC) as a negative electrode exhibits a high capacitance of 147.2 F g-1 in a potential range from 0 to 1.5 V and superior energy density of 46.0 Wh kg-1 at a power density of 351.6 W kg-1.
Zobrazit více v PubMed
Dong L., Xu C., Li Y., Huang Z.H., Kang F., Yang Q.H., Zhao X. Flexible electrodes and supercapacitors for wearable energy storage: A review by category. J. Mater. Chem. A. 2016;4:4659–4685. doi: 10.1039/C5TA10582J. DOI
Liu Y., Peng X. Recent advances of supercapacitors based on two-dimensional materials. Appl. Mater. Today. 2017;7:104–115. doi: 10.1016/j.apmt.2017.05.002. DOI
Choudhary N., Li C., Moore J., Nagaiah N., Zhai L., Jung Y., Thomas J. Asymmetric supercapacitor electrodes and devices. Adv. Mater. 2017;29:1605336. doi: 10.1002/adma.201605336. PubMed DOI
Meng Q., Cai K., Chen Y., Chen L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy. 2017;36:268–285. doi: 10.1016/j.nanoen.2017.04.040. DOI
Liu C., Li F., Ma L.P., Cheng H.M. Advanced materials for energy storage. Adv. Mater. 2010;22:28–62. doi: 10.1002/adma.200903328. PubMed DOI
Strauss V., Marsh K., Kowal M.D., El-Kady M., Kaner R.B. A Simple Route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 2018;30:1704449. doi: 10.1002/adma.201704449. PubMed DOI
Dong S., He X., Zhang H., Xie X., Yu M., Yu C., Xiao N., Qiu J. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. J. Mater. Chem. A. 2018;6:15954–15960. doi: 10.1039/C8TA04080J. DOI
Zheng W., Lv R., Na B., Liu H., Jin T., Yuan D. Nanocellulose-mediated hybrid polyaniline electrodes for high performance flexible supercapacitors. J. Mater. Chem. A. 2017;5:12969–12976. doi: 10.1039/C7TA01990D. DOI
Zhou Y., Hu X., Shang Y., Hua C., Song P., Li X., Zhang Y., Cao A. Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers. RSC Adv. 2016;6:62062–62070. doi: 10.1039/C6RA07297F. DOI
Xiong D., Li X., Bai Z., Li J., Shan H., Fan L., Long C., Li D., Lu X. Rational design of hybrid Co3O4/graphene films: Free-standing flexible electrodes for high performance supercapacitors. Electrochim. Acta. 2018;259:338–347. doi: 10.1016/j.electacta.2017.10.160. DOI
Xing L., Dong Y., Hu F., Wu X., Umaret A. Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors. Dalton Trans. 2018;47:5687–5694. doi: 10.1039/C8DT00750K. PubMed DOI
Gao Z., Song N., Li X. Microstructural design of hybrid CoO@NiO and graphene nano-architectures for flexible high performance supercapacitors. J. Mater. Chem. A. 2015;3:14833–14844. doi: 10.1039/C5TA03057A. DOI
Eskusson J., Rauwel P., Nerut J., Jänes A. A hybrid capacitor based on Fe3O4-graphene nanocomposite/few-layer graphene in different aqueous electrolytes. J. Electrochem. Soc. 2016;163:A2768–A2775. doi: 10.1149/2.1161613jes. DOI
Kim G., Kang J., Choe G., Yim S. Enhanced energy density of supercapacitors using hybrid electrodes based on Fe2O3 and MnO2 nanoparticles. Int. J. Electrochem. Sci. 2017;12:10015–10022. doi: 10.20964/2017.11.44. DOI
Wang T., Zhang S., Yan X., Yu M., Wang L., Bell J., Wang H. 2-Methylimidazole-derived Ni-Co layered double hydroxide nanosheets as high rate capability and high energy density storage material in hybrid supercapacitors. ACS Appl. Mater. Interfaces. 2017;9:15510–15524. doi: 10.1021/acsami.7b02987. PubMed DOI
Gao L., Surjadi J.U., Cao K., Zhang H., Li P., Su S., Jiang C., Song J., Sun D., Lu Y. Flexible fiber-shaped supercapacitor based on nickel-cobalt double hydroxide and pen ink electrodes on metallized carbon fiber. ACS Appl. Mater. Interfaces. 2017;9:5409–5418. doi: 10.1021/acsami.6b16101. PubMed DOI
Li R., Hu Z., Shao X., Cheng P., Li S., Yu W., Lin W., Yuan D. Large scale synthesis of NiCo layered double hydroxides for superior asymmetric electrochemical capacitor. Sci. Rep. 2016;6:18737. doi: 10.1038/srep18737. PubMed DOI PMC
Li T., Li G., Li L., Liu L., Xu Y., Ding H., Zhang T. Large-scale self-assembly of 3D flower-like hierarchical Ni/Co-LDHs microspheres for high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 2016;8:2562–2572. doi: 10.1021/acsami.5b10158. PubMed DOI
Nagaraju G., Raju G.S., Co Y.H., Yu J.S. Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: A cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale. 2016;8:812–825. doi: 10.1039/C5NR05643H. PubMed DOI
Han J., Dou Y., Zhao J., Wei M., Evans D.G., Duan X. Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage. Small. 2013;9:98–106. doi: 10.1002/smll.201201336. PubMed DOI
Han B., Cheng G., Zhang E., Zhang L., Wang X. Three dimensional hierarchically porous ZIF-8 derived carbon/LDH core-shell composite for high performance supercapacitors. Electrochim. Acta. 2018;263:391–399. doi: 10.1016/j.electacta.2017.12.175. DOI
Shakir I., Shahid M., Rana U.A., Nashef I.M.A., Hussain R. Nickel–Cobalt layered double hydroxide anchored zinc oxide nanowires grown on carbon fiber cloth for high-performance flexible pseudocapacitive energy storage devices. Electrochim. Acta. 2014;129:28–32. doi: 10.1016/j.electacta.2014.02.082. DOI
Chen H., Cai F., Kang Y., Zeng S., Chen M., Li Q. Facile assembly of Ni-Co hydroxide nanoflakes on carbon nanotube network with highly electrochemical capacitive performance. ACS Appl. Mater. Interfaces. 2014;6:19630–19637. doi: 10.1021/am5041576. PubMed DOI
Li X., Shen J., Sun W., Hong X., Wang R., Zhao X., Yan X. A super-high energy density asymmetric supercapacitor based on 3D core–shell structured NiCo-layered double hydroxide@carbon nanotube and activated polyaniline-derived carbon electrodes with commercial level mass loading. J. Mater. Chem. A. 2015;3:13244–13253. doi: 10.1039/C5TA01292A. DOI
Liang H., Lin J., Jia L.H., Chen S., Qi J., Cao J., Lin T., Fei W., Feng J. Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor. J. Power Sources. 2018;378:248–254. doi: 10.1016/j.jpowsour.2017.12.046. DOI
Wang X., Xu M., Fu Y., Wang S., Yang T., Jiao K. A highly conductive and hierarchical PANI micro/nanostructure and its supercapacitor application. Electrochim. Acta. 2016;222:701–708. doi: 10.1016/j.electacta.2016.11.026. DOI
Zhou K., He Y., Xu Q., Zhang Q., Zhou A., Lu Z., Yang L., Jiang Y., Ge D., Liu X.Y., et al. A hydrogel of ultrathin pure polyaniline nanofibers: Oxidant-templating preparation and supercapacitor application. ACS Nano. 2018;12:5888–5894. doi: 10.1021/acsnano.8b02055. PubMed DOI
Zhang H., Dai Y., Zhang H., Wang W., Huang Q., Chen Y., Pu L. Synthesis and electrochemical measurement of three dimensional carbon nanofibers/Co3O4-polyaniline composites as supercapacitor electrode materials in neutral electrolyte. Int. J. Electrochem. Sci. 2016;11:6279–6286. doi: 10.20964/2016.07.99. DOI
Hai Z., Gao L., Zhang Q., Xu H., Cui D., Zhang Z., Tsoukalas D., Tang J., Yan S., Xue C. Facile synthesis of core-shell structured PANI-Co3O4 nanocomposites with superior electrochemical performance in supercapacitors. Appl. Surf. Sci. 2016;361:57–62. doi: 10.1016/j.apsusc.2015.11.171. DOI
Pan L., Yu G., Zhai D., Lee H.R., Zhao W., Liu N., Wang H., Tee B., Shi Y., Cui Y., et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA. 2012;109:9287–9292. doi: 10.1073/pnas.1202636109. PubMed DOI PMC
Shao M., Li Z., Zhang R., Ning F., Wei M., Evans D.G., Duan X. Hierarchical conducting polymer@clay core-shell arrays for flexible all-solid-state supercapacitor devices. Small. 2015;11:3530–3538. doi: 10.1002/smll.201403421. PubMed DOI
Ning J., Zhang T., He Y., Jia C., Saha P., Cheng Q. Co3O4@CoS core-shell nanosheets on carbon cloth for high performance supercapacitor electrodes. Materials. 2017;10:608. doi: 10.3390/ma10060608. PubMed DOI PMC
Yang M., Cheng H., Gu Y., Sun Z., Hu J., Cao L., Lv F., Li M., Wang W., Wang Z., et al. Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors. Nano Res. 2015;8:2744–2754. doi: 10.1007/s12274-015-0781-3. DOI
Jin L., Jiang Y., Zhang M., Li H., Xiao L., Li M., Ao Y. Oriented polyaniline nanowire arrays grown on dendrimer (PAMAM) functionalized multiwalled carbon nanotubes as supercapacitor electrode materials. Sci. Rep. 2018;8:6268. doi: 10.1038/s41598-018-24265-7. PubMed DOI PMC
Cai X., Shen X., Ma L., Ji Z., Xu C., Yuan A. Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor. Chem. Eng. J. 2015;268:251–259. doi: 10.1016/j.cej.2015.01.072. DOI
Xie L., Hu Z., Lv C., Sun G., Wang J., Li Y., He H., Wang J., Li K. CoxNi1−x double hydroxide nanoparticles with ultrahigh specific capacitances as supercapacitor electrode materials. Electrochim. Acta. 2012;78:205–211. doi: 10.1016/j.electacta.2012.05.145. DOI
Liu X.B., Wu Z., Yin Y. Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors. Chem. Eng. J. 2017;323:330–339. doi: 10.1016/j.cej.2017.04.115. DOI
Brousse T., Bélanger D., Long J.W. To be or not to be pseudocapacitive. J. Electrochem. Soc. 2015;162:5185–5189. doi: 10.1149/2.0201505jes. DOI
Cao J., Li L., Xi Y., Li J., Pan X., Chen D., Han W. Core-shell structural PANI-derived carbon@Co-Ni LDH electrode for high-performance asymmetric supercapacitors. Sustain. Energy Fuels. 2018;2:1350–1355. doi: 10.1039/C8SE00123E. DOI
Yu C., Yang J., Zhao C., Fan X., Wang G., Qiu J. Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: Understanding the role of nano-structured carbon. Nanoscale. 2014;6:3097–3104. doi: 10.1039/C3NR05477B. PubMed DOI
Bai X., Liu Q., Lu Z., Liu J., Chen R., Li R., Song D., Jing X., Liu P., Wang J. Rational design of sandwiched Ni-Co layered double hydroxides hollow nanocages/graphene derived from metal–organic framework for sustainable energy storage. ACS Sustain. Chem. Eng. 2017;5:9923–9934. doi: 10.1021/acssuschemeng.7b01879. DOI
Li H., Musharavati F., Zalenezhad E., Chen X., Hui K.N., Hui K.S. Electrodeposited NiCo layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors. Electrochim. Acta. 2018;261:178–187. doi: 10.1016/j.electacta.2017.12.139. DOI
Chen Y., Pang W.K., Bai H., Zhou T., Liu Y., Li S., Guo Z. Enhanced structural stability of nickel-cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes. Nano Lett. 2016;17:429–436. doi: 10.1021/acs.nanolett.6b04427. PubMed DOI
Huang C., Teng H. Influence of carbon nanotube grafting on the impedance behavior of activated carbon capacitors. J. Electrochem. Soc. 2008;155:739–744. doi: 10.1149/1.2965503. DOI
Liu Y., Teng X., Mi Y., Chen Z. A new architecture design of Ni-Co LDH-based pseudocapacitors. J. Mater. Chem. A. 2017;5:24407–24415. doi: 10.1039/C7TA07795E. DOI
Li Z., Xu Z., Wang H., Ding J., Zahiri B., Holt C., Tan X., Mitlin D. Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ. Sci. 2014;7:1708–1718. doi: 10.1039/C3EE43979H. DOI
Chen H., Jiang J., Zhang L., Xia D., Zhao Y., Guo D., Qi T., Wan H. In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J. Power Sources. 2014;254:249–257. doi: 10.1016/j.jpowsour.2013.12.092. DOI
Wang X., Sumboja A., Lin M., Yan J., Lee P.S. Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: A hybrid material for an asymmetric supercapacitor device. Nanoscale. 2012;4:7266–7272. doi: 10.1039/c2nr31590d. PubMed DOI