Solution Synthesis of Co-Ni-W-Based ODS Alloy Powder
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
51574029
National Natural Science Foundation of China
51574030
National Natural Science Foundation of China
PubMed
30991674
PubMed Central
PMC6514976
DOI
10.3390/ma12081231
PII: ma12081231
Knihovny.cz E-zdroje
- Klíčová slova
- Co-Ni-W-based powder, low-temperature combustion synthesis, oxide dispersion strengthening, particle size,
- Publikační typ
- časopisecké články MeSH
Low-temperature combustion synthesis was utilized to prepare Co-Ni-W-based oxide dispersion strengthened (ODS) alloy powder. The influence of the U/Co and C/Co ratios on the morphology and specific surface area of the combusted powder was investigated. Particle size, phase constituents, and element distribution of the resulting Co-Ni-W-based ODS alloy powder were characterized. The results indicate that insufficient urea induced no autocombustion reaction, while excess urea and glucose inhibited the combustion reaction. The optimized contents of urea and glucose were around U/Co = 1.2 and C/Co = 1.5, and the specific surface area of the powder reached 43.5 m²/g. The lamellar Co-Ni-W-based ODS alloy powder with particle sizes of 1-21 μm was the soft agglomeration of a high population of nanosized (65 nm) particles. These nanoparticles grew from 65 to 260 nm in the reduction temperature range of 700-900 °C. Homogeneous distribution of Co, Ni, W, and Y in the Co-Ni-W-based ODS alloy powder was achieved.
Zobrazit více v PubMed
Takezawa K., Ukai S., Hayashi S. Microstructure control of Co-base ODS alloys. Adv. Mater. Res. 2011;239–242:864–867. doi: 10.4028/www.scientific.net/AMR.239-242.864. DOI
Zhang L., Ukai S., Hoshino T., Hayashi S., Qu X.H. Y2O3 evolution and dispersion refinement in Co-base ODS alloys. Acta Mater. 2009;57:3671–3682. doi: 10.1016/j.actamat.2009.04.033. DOI
Zhang L., Qu X.H., He X.B., Rafi-ud Din M.L.Q., Zhu H.M. Hot deformation behavior of Co-base ODS alloys. J. Alloy. Compd. 2012;512:39–46. doi: 10.1016/j.jallcom.2011.08.097. DOI
Zhang L., Qu X.H., He X.B., Rafi-ud Din M.L.Q., Liu Y. Microstructure and mechanical properties of γ΄ strengthened Co-Ni-Al-W-base ODS alloys. Mater. Chem. Phys. 2012;136:371–378. doi: 10.1016/j.matchemphys.2012.06.055. DOI
Sato J., Omori T., Oikawa K., Ohnuma I., Karinuma R., Ishida K. Cobalt-base high-temperature alloys. Science. 2006;312:90–91. doi: 10.1126/science.1121738. PubMed DOI
Suzuki A., Pollock J.M. High-temperature strength and deformation of γ/γ′ two-phase Co-Al-W-base alloys. Acta Mater. 2008;56:1288–1297. doi: 10.1016/j.actamat.2007.11.014. DOI
Zhang L., He X.B., Qin M.L., Liu Y., Qu X.H. The influence of Ni on the microstructure of Co-base ODS alloys. Adv. Mater. Res. 2012;535–537:1011–1014. doi: 10.4028/www.scientific.net/AMR.535-537.1011. DOI
Zhang L., He X.B., Qu X.H., Liu Y., Qin M.L., Zhu H.M. Characteristics of complex oxides in Co based ODS alloys. Powder Metall. 2013;56:24–31. doi: 10.1179/1743290112Y.0000000017. DOI
Nasiri H., Khaki J.V., Zebarjad S.M. One-step fabrication of Cu-Al2O3 nanocomposite via solution combustion synthesis route. J. Alloy. Compd. 2011;509:5305–5308. doi: 10.1016/j.jallcom.2011.01.185. DOI
Purohit R.D., Sharma B.P., Pillai K.T., Tyagi A.K. Ultrafine ceria powders via glycine-nitrate combustion. Mater. Res. Bull. 2001;36:2711–2721. doi: 10.1016/S0025-5408(01)00762-0. DOI
Chu A.M., Qin M.L., Rafi-ud Din B.R.J., Lu H.F., Qu X.H. Effect of urea on the size and morphology of AlN nanoparticles synthesized from combustion synthesis precursors. J. Alloy. Compd. 2012;530:144–161. doi: 10.1016/j.jallcom.2011.12.133. DOI
Qin M.L., Du X.L., Wang J., Humail I.S., Qu X.H. Influence of carbon on the synthesis of AlN powder from combustion synthesis precursors. J. Eur. Ceram. Soc. 2009;29:795–799. doi: 10.1016/j.jeurceramsoc.2008.07.019. DOI
Chu A.M., Qin M.L., Rafi-ud Din B.R.J., Lu H.F., Qu X.H. Citric Acid-Assisted Combustion-Carbothermal Synthesis of Well-Distributed Highly Sinterable AlN Nanopowders. J. Am. Ceram. Soc. 2012;95:2510–2515. doi: 10.1111/j.1551-2916.2012.05225.x. DOI
Jung C.H., Jalota S., Bhaduri S.B. Quantitative effects of fuel on the synthesis of Ni/NiO particles using a micorwave-induced solution combusion synthesis in air atmosphere. Mater. Lett. 2005;59:2426–2432. doi: 10.1016/j.matlet.2005.03.021. DOI
Rao K.V., Sunandana C.S. Co3O4 nanoparticles by chemical combustion: Effect of fuel to oxidizer ratio on structure, microstructure and EPR. Solid State Commun. 2008;148:32–37.
Mangalaraja R.V., Mouzon J., Hedström P., Camurri C.P., Ananthakumar S., Odén M. Microwave assisted combustion synthesis of nanocrystalline yttria and its powder characteristics. Powder Technol. 2009;191:309–314. doi: 10.1016/j.powtec.2008.10.019. DOI
Zhang Y., Stangle G. Preparation of fine multicomponent oxide ceramic powder by a combustion synthesis process. J. Mater. Res. 1994;9:1997–2004. doi: 10.1557/JMR.1994.1997. DOI
Biamino S., Badini C. Combustion synthesis of lanthanum chromite sartting from water solutions: Investigation of process mechanism by DTA-TGA-MS. J. Eur. Ceram. Soc. 2004;24:3021–3034. doi: 10.1016/j.jeurceramsoc.2003.10.005. DOI