• This record comes from PubMed

Preventable Mortality in Regions of Slovakia-Quantification of Regional Disparities and Investigation of the Impact of Environmental Factors

. 2019 Apr 17 ; 16 (8) : . [epub] 20190417

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Environmental health is among the priority areas of public health, and the current professional communities are intensively engaged with it. The main objective of the study is to quantify regional disparities of preventable mortality in Slovakia and to study the extent of the influence of selected environmental factors on changes in the development of its values. A cross-sectional linear regression model is used to quantify effects of environmental factors on the preventable mortality. Also, cluster analysis is used to identify regions with similar levels of air pollution. Environmental factors were selected based on the study of the World Health Organization. From the point of view of the influence of environmental factors on preventable mortality in the case of men, statistically significant connection to sewerage, SO2 production, and production of particulate matter was demonstrated. In the case of women, equally important factors showed connection to sewerage and SO2. The results of this study point to significant regional disparities in preventable mortality and a different degree of impact of environmental factors. Preventable mortality is above the Slovak average in most of the least-developed districts. Even in this group, there are significant differences.

See more in PubMed

Treurniet H.F., Boshuizen H.C., Harteloh P.P.M. Avoidable mortality in Europe (1980–1997): A comparison of trends. J. Epidemiol. Community Health. 2004;58:290–295. doi: 10.1136/jech.2002.006452. PubMed DOI PMC

Gavurova B., Vagasova T. Advances in Health Management. InTech; Rijeka, Croatia: 2017. Assessment of Avoidable Mortality Concepts in the European Union Countries, Their Benefits and Limitations.

Weber A., Clerc M. Deaths amenable to health care: Converging trends in the EU? Health Policy. 2017;121:644–652. doi: 10.1016/j.healthpol.2017.03.017. PubMed DOI

Van den Heuvel W.J.A., Ghinescu M., Olaroiu M. How to Prevent Preventable Death? SM Prev. Med. Public Health. 2017;1:1004.

Gay J.G., Paris V., Devaux M., de Looper M. Mortality Amenable to Health Care in 31 OECD Countries: Estimates and Methodological Issues. OECD Publishing; Paris, France: 2011. [(accessed on 16 April 2019)]. OECD Health Working Papers. No. 55. Available online: DOI

Gianino M.M., Lenzi J., MuÇa A., Fantini M.P., Siliquini R., Ricciardi W., Damiani G. Declining amenable mortality: Time trend (2000–2013) and geographic area analysis. Health Serv. Res. 2017;52:1908–1927. doi: 10.1111/1475-6773.12563. PubMed DOI PMC

Korda R.J., Butler J.R.G. Effect of healthcare on mortality: Trends in avoidable mortality in Australia and comparisons with Western Europe. Public Health. 2006;120:95–105. doi: 10.1016/j.puhe.2005.07.006. PubMed DOI

Stirbu I., Kunst A.E., Bopp M., Leinsalu M., Regidor E., Esnaola S., Costa G., Martikainen P., Borrell C., Deboosere P., et al. Educational inequalities in avoidable mortality in Europe. J. Epidemiol. Community Health. 2010;64:913–920. doi: 10.1136/jech.2008.081737. PubMed DOI

Nolte E., McKee M. Variations in amenable mortality trends in 16 high-income nations. Health Policy. 2011;103:47–52. doi: 10.1016/j.healthpol.2011.08.002. PubMed DOI

Plug I., Hoffmann R., Artnik B., Bopp M., Borrell C., Costa G., Deboosere P., Esnaola S., Kalediene R., Leinsalu M., et al. Socioeconomic inequalities in mortality from conditions amenable to medical interventions: Do they reflect inequalities in access or quality of health care? BMC Public Health. 2012;12:346. doi: 10.1186/1471-2458-12-346. PubMed DOI PMC

World Health Organization (WHO) Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. World Health Organization; Geneva, Switzerland: 2009. [(accessed on 16 April 2019)]. Available online: http://www.who.int/iris/handle/10665/44203.

Kontopantelis E., Buchan I., Webb R.T., Ashcroft D.M., Mamas M.A., Doran T. Disparities in mortality among 25–44-year-olds in England: A longitudinal, population-based study. Lancet Public Health. 2018;3:e567–e575. doi: 10.1016/S2468-2667(18)30177-4. PubMed DOI PMC

Minton J.W., McCartney G. Is there a north–south mortality divide in England or is London the outlier? Lancet Public Health. 2018;3:e556–e557. doi: 10.1016/S2468-2667(18)30188-9. PubMed DOI

Bennett J.E., Pearson-Stuttard J., Kontis V., Capewell S., Wolfe I., Ezzati M. Contributions of diseases and injuries to widening life expectancy inequalities in England from 2001 to 2016: A population-based analysis of vital registration data. Lancet Public Health. 2018;3:e586–e597. doi: 10.1016/S2468-2667(18)30214-7. PubMed DOI PMC

Steel N., Ford J.A., Newton J.N., Davis A.C.J., Vos T., Naghavi M., Glenn S., Hughes A., Dalton A.M., Stockton D., et al. Changes in health in the countries of the UK and 150 English Local Authority areas 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392:1647–1661. doi: 10.1016/S0140-6736(18)32207-4. PubMed DOI PMC

Hanlon P., Nicholl B.I., Jani B.D., Lee D., McQueenie R., Mair F.S. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: A prospective analysis of 493 737 UK Biobank participants. Lancet Public Health. 2018;3:e323–e332. doi: 10.1016/S2468-2667(18)30091-4. PubMed DOI PMC

Dicker D., Nguyen G., Abate D., Abate K.H., Abay S.M., Abbafati C., Abbasi N., Abbastabar H., Abd-Allah F., Abdela J., et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1684–1735. doi: 10.1016/S0140-6736(18)31891-9. PubMed DOI PMC

Lozano R., Fullman N., Abate D., Abay S.M., Abbafati C., Abbasi N., Abbastabar H., Abd-Allah F., Abdela J., Abdelalim A., et al. Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:2091–2138. doi: 10.1016/S0140-6736(18)32281-5. PubMed DOI PMC

Pautrel X. Pollution and life expectancy: How environmental policy can promote growth. Ecol. Econ. 2009;68:1040–1051. doi: 10.1016/j.ecolecon.2008.07.011. DOI

Ebenstein A., Fan M., Greenstone M., He G., Yin O., Zhou M. Growth, pollution, and life expectancy: China from 1991–2012. Am. Econ. Rev. 2015;105:226–231. doi: 10.1257/aer.p20151094. DOI

Office for National Statistics . Avoidable Mortality in England and Wales, 2011. Experimental Statistics; Newport, Wales, UK: 2013. [(accessed on 9 October 2013)]. Available online: www.ons.gov.uk.

Curtin L.R., Klein R.J. Direct Standardization (Age-Adjusted Death Rates) (No. 6) US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Center for Health Statistics; Hyattsville, MD, USA: 1995.

Anderson R.N., Rosenberg H.M. Age standardization of death rates: Implementation of the year 2000 standard. Natl. Vital Stat. Rep. 1998;47:1–17. PubMed

European Commission . Revision of the European Standard Population—Report of Eurostat’s Task Force. Publication Office of the European Union; Luxembourg: 2013. [(accessed on 16 April 2019)]. Available online: https://ec.europa.eu/eurostat/documents/3859598/5926869/KS-RA-13-028-EN.PDF/e713fa79-1add-44e8-b23d-5e8fa09b3f8f.

Eurostat Forse Task Specifications of the Public Health Theme Tables: Amenable and Preventable Deaths. [(accessed on 16 April 2019)];2014 Available online: http://ec.europa.eu/eurostat/cache/metadata/Annexes/hlth_cdeath_esms_an4.pdf.

Long J.S., Ervin L.H. Using heteroscedasticity consistent standard errors in the linear regression model. Am. Stat. 2000;54:217–224.

Telgarsky M., Vattani A. Hartigan’s Method: K-means Clustering without Voronoi; Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics; Sardinia, Italy. 13–15 May 2010; pp. 820–827.

Slonim N., Aharoni E., Crammer K. Hartigan’s K-Means Versus Lloyd’s K-Means-Is It Time for a Change?; Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence; Beijing, China. 3–9 August 2013; pp. 1677–1684.

Hartigan J.A., Wong M.A. Algorithm AS 136: A k-Means Clustering Algorithm. J. R. Stat. Soc. Ser. C. 1979;28:108. doi: 10.2307/2346830. DOI

Xiang Z., Zahidul M. Hartigan’s Method for K-modes Clustering and Its Advantages; Proceedings of the Australasian Data Mining Conference; Brisbane, Australia. 27–28 November 2014; p. 158.

Rousseeuw P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987;20:53–65. doi: 10.1016/0377-0427(87)90125-7. DOI

Duda R.O., Hart P.E., Stork D.G. Pattern Classification and Scene Analysis. Wiley Interscience Publication; New York, NY, USA: 1973.

Milligan G.W., Cooper M.C. An examination of procedures for determining the number of clusters in a data set. Psychometrika. 1985;50:159–179. doi: 10.1007/BF02294245. DOI

Ball G.H., Hall D.J. ISODATA, a Novel Method of Data Analysis and Pattern Classification. Stanford research Institute; Menlo Park, CA, USA: 1965.

McClain J.O., Rao V.R. Trade-offs and conflicts in evaluation of health system alternatives: Methodology for analysis. Health Serv. Res. 1974;9:35. PubMed PMC

Kutner M.H., Nachtsheim C.J., Neter J. Applied Linear Regression Models. 4th ed. McGraw-Hill Irwin; Chicago, IL, USA: 2004.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...