• This record comes from PubMed

High-Alpine Permafrost and Active-Layer Soil Microbiomes Differ in Their Response to Elevated Temperatures

. 2019 ; 10 () : 668. [epub] 20190403

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

The response of microbial communities to the predicted rising temperatures in alpine regions might be an important part of the ability of these ecosystems to deal with climate change. Soil microbial communities might be significantly affected by elevated temperatures, which influence the functioning of soils within high-alpine ecosystems. To evaluate the potential of the permafrost microbiome to adapt to short-term moderate and extreme warming, we set up an incubation experiment with permafrost and active soil layers from northern and southern slopes of a high-alpine mountain ridge on Muot da Barba Peider in the Swiss Alps. Soils were acclimated to increasing temperatures (4-40°C) for 26 days before being exposed to a heat shock treatment of 40°C for 4 days. Alpha-diversity in all soils increased slightly under gradual warming, from 4 to 25°C, but then dropped considerably at 40°C. Similarly, heat shock induced strong changes in microbial community structures and functioning in the active layer of soils from both northern and southern slope aspects. In contrast, permafrost soils showed only minor changes in their microbial community structures and no changes in their functioning, except regarding specific respiration activity. Shifts in microbial community structures with increasing temperature were significantly more pronounced for bacteria than for fungi, regardless of the soil origin, suggesting higher resistance of high-alpine fungi to short-term warming. Firmicutes, mainly represented by Tumebacillus and Alicyclobacillaceae OTUs, increased strongly at 40°C in active layer soils, reaching almost 50% of the total abundance. In contrast, Saccharibacteria decreased significantly with increasing temperature across all soil samples. Overall, our study highlights the divergent responses of fungal and bacterial communities to increased temperature. Fungi were highly resistant to increased temperatures compared to bacteria, and permafrost communities showed surprisingly low response to rising temperature. The unique responses were related to both site aspect and soil origin indicating that distinct differences within high-alpine soils may be driven by substrate limitation and legacy effects of soil temperatures at the field site.

See more in PubMed

Abarenkov K., Nilsson R. H., Larsson K. H., Alexander I. J., Eberhardt U., Erland S., et al. (2010). The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytol. 186 281–285. 10.1111/j.1469-8137.2009.03160.x PubMed DOI

Allison S. D., Martiny J. B. H. (2008). Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. U.S.A. 105 11512–11519. 10.1073/pnas.0801925105 PubMed DOI PMC

Altshuler I., Goordial J., Whyte L. G. (2017). “Microbial life in permafrost,” in Psychrophiles: From Biodiversity to Biotechnology, Second Edn, ed. Margesin R. (New York, NY: Springer International Publishing; ), 153–179. 10.1007/978-3-319-57057-0-8 DOI

Anderson T. H., Domsch K. H. (2010). Soil microbial biomass: the eco-physiological approach. Soil Biol. Biochem. 42 2039–2043. 10.1016/j.soilbio.2010.06.026 DOI

Anderson T. H., Martens R. (2013). DNA determinations during growth of soil microbial biomasses. Soil Biol. Biochem. 57 487–495. 10.1016/j.soilbio.2012.09.031 DOI

Aslam S. N., Dumbrell A. J., Sabir J. S., Mutwakil M. H. Z., Baeshen M. M. N., Abo-Aba S. E. M., et al. (2016). Soil compartment is a major determinant of the impact of simulated rainfall on desert microbiota. Environ. Microbiol. 18 5048–5062. 10.1111/1462-2920.13474 PubMed DOI

Baldrian P. (2009). Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? Oecologia 161 657–660. 10.1007/s00442-009-1433-7 PubMed DOI

Bárcenas-Moreno G., Brandón M. G., Rousk J., Bååth E. (2009). Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob. Change Biol. 15 2950–2957. 10.1111/j.1365-2486.2009.01882.x DOI

Bardgett R. D., Freeman C., Ostle N. J. (2008). Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2 805–814. 10.1038/ismej.2008.58 PubMed DOI

Barry R. B. (2008). “Geographical controls of mountain meteorological elements,” in Mountain Weather and Climate, ed. Barry R. B. (Cambridge: Cambridge University Press; ), 24–108. 10.15713/ins.mmj.3 DOI

Bárta J., Šlajsová P., Tahovská K., Picek T., Šantrůčková H. (2014). Different temperature sensitivity and kinetics of soil enzymes indicate seasonal shifts in C, N and P nutrient stoichiometry in acid forest soil. Biogeochemistry 117 525–537. 10.1007/s10533-013-9898-1 DOI

Bengtsson-Palme J., Hartmann M., Eriksson K. M., Pal C., Thorell K., Larsson D. G. J., et al. (2015). metaxa2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Mol. Ecol. Resour. 15 1403–1414. 10.1111/1755-0998.12399 PubMed DOI

Bengtsson-Palme J., Ryberg M., Hartmann M., Branco S., Wang Z., Godhe A., et al. (2013). Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4 914–919. 10.1111/2041-210X.12073 DOI

Bradford M. A., Watts B. W., Davies C. A. (2010). Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob. Change Biol. 16 1576–1588. 10.1111/j.1365-2486.2009.02040.x DOI

Buzzini P., Branda E., Goretti M., Turchetti B. (2012). Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol. Ecol. 82 217–241. 10.1111/j.1574-6941.2012.01348.x PubMed DOI

Čapek P., Diáková K., Dickopp J. E., Bárta J., Wild B., Schnecker J., et al. (2015). The effect of warming on the vulnerability of subducted organic carbon in arctic soils. Soil Biol. Biochem. 90 19–29. 10.1016/j.soilbio.2015.07.013 DOI

Chaer G., Fernandes M., Myrold D., Bottomley P. (2009). Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils. Microb. Ecol. 58 414–424. 10.1007/s00248-009-9508-x PubMed DOI

Chong C. W., Silvaraj S., Supramaniam Y., Snape I., Tan I. K. P. (2018). Effect of temperature on bacterial community in petroleum hydrocarbon-contaminated and uncontaminated Antarctic soil. Polar Biol. 41 1–13. 10.1007/s00300-018-2316-3 DOI

Coolen M. J. L., Orsi W. D. (2015). The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Front. Microbiol. 6:197. 10.3389/fmicb.2015.00197 PubMed DOI PMC

Davidson E. A., Janssens I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440 165–173. 10.1038/nature04514 PubMed DOI

de Scally S. Z., Makhalanyane T. P., Frossard A., Hogg I. D., Cowan D. A. (2016). Antarctic microbial communities are functionally redundant, adapted and resistant to short term temperature perturbations. Soil Biol. Biochem. 103 160–170. 10.1016/j.soilbio.2016.08.013 DOI

de Vries F. T., Griffiths R. I., Bailey M., Craig H., Girlanda M., Gweon H. S., et al. (2018). Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9:3033. 10.1038/s41467-018-05516-7 PubMed DOI PMC

De Vries F. T., Shade A. (2013). Controls on soil microbial community stability under climate change. Front. Microbiol. 4:265. 10.3389/fmicb.2013.00265 PubMed DOI PMC

DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72 5069–5072. 10.1128/AEM.03006-05 PubMed DOI PMC

Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 2460–2461. 10.1093/bioinformatics/btq461 PubMed DOI

Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10 996–998. 10.1038/nmeth.2604 PubMed DOI

Edgar R. C., Flyvbjerg H. (2015). Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31 3476–3482. 10.1093/bioinformatics/btv401 PubMed DOI

Fierer N., Bradford M. A., Jackson R. B. (2007). Towards an ecological classification of soil bacteria. Ecology 88 1354–1364. 10.1890/05-1839 PubMed DOI

Filippidou S., Junier T., Wunderlin T., Lo C. C., Li P. E., Chain P. S., et al. (2015). Under-detection of endospore-forming Firmicutes in metagenomic data. Comput. Struct. Biotechnol. J. 13 299–306. 10.1016/j.csbj.2015.04.002 PubMed DOI PMC

Fontaine S., Barot S., Barré P., Bdioui N., Mary B., Rumpel C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450 277–280. 10.1038/nature06275 PubMed DOI

Frey B., Rime T., Phillips M., Stierli B., Hajdas I., Widmer F., et al. (2016). Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 92 1–17. 10.1093/femsec/fiw018 PubMed DOI

Gentsch N., Wild B., Mikutta R., Čapek P., Diáková K., Schrumpf M., et al. (2018). Temperature response of permafrost soil carbon is attenuated by mineral protection. Glob. Change Biol. 24 3401–3415. 10.1111/gcb.14316 PubMed DOI

Gilichinsky D. A., Wilson G. S., Friedmann E. I., Mckay C. P., Sletten R. S., Rivkina E. M., et al. (2007). Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7 275–311. 10.1089/ast.2006.0012 PubMed DOI

Gobiet A., Kotlarski S., Beniston M., Heinrich G., Rajczak J., Stoffel M. (2014). 21st century climate change in the European Alps – A review. Sci. Total Environ. 493 1138–1151. 10.1016/j.scitotenv.2013.07.050 PubMed DOI

Graham D. E., Wallenstein M. D., Vishnivetskaya T. A., Waldrop M. P., Phelps T. J., Pfiffner S. M., et al. (2012). Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME J. 6 709–712. 10.1038/ismej.2011.163 PubMed DOI PMC

Griffiths B. S., Ritz K., Bardgett R. D., Cook R., Christensen S., Ekelund F., et al. (2000). Ecosystem response of pasture soil communities to fumigation-indicated microbial diversity reductions: an examination of the biodiversity - ecosystem function relationship. Oikos 90 279–294. 10.2307/3547138 DOI

Gruber S., Haeberli W. (2009). “Mountain permafrost,” in Permafrost Soils, ed. Margesin R. (Heidelberg: Springer; ), 33–44. 10.1007/978-3-540-69371-0 DOI

Gruber S., Hoelzle M., Haeberli W. (2004). Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophys. Res. Lett. 31 1–4. 10.1029/2004GL020051 DOI

Haeberli W., Guodong C., Gorbunov A. P., Harris S. A. (1993). Mountain permafrost and climatic change. Permafrost Periglacial Process. 4 165–174. 10.1002/ppp.3430040208 DOI

Hartley I. P., Hopkins D. W., Garnett M. H., Sommerkorn M., Wookey P. A. (2008). Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol. Lett. 11 1092–1100. 10.1111/j.1461-0248.2008.01223.x PubMed DOI

Hartman W. H., Richardson C. J. (2013). Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): is there a biological stoichiometry of soil microbes? PLoS One 8:e57127. 10.1371/journal.pone.0057127 PubMed DOI PMC

Henry H. A. L. (2007). Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements. Soil Biol. Biochem. 39 977–986. 10.1016/j.soilbio.2006.11.017 DOI

Hochachka P. W., Somero G. N. (2002). Biochemical Adaptation: Mechanisms and Process in Physiology Evolution, Functional Metabolism. New York, NY: Oxford University Press, 10.1002/047167558X.ch14 DOI

Holland E. A., Coleman D. C. (1987). Litter placement effects on microbial and organic matter dynamics in an agroecosystem. Ecology 68 425–433. 10.2307/1939274 DOI

Hu W., Zhang Q., Tian T., Cheng G., An L., Feng H. (2015). The microbial diversity, distribution, and ecology of permafrost in China: a review. Extremophiles 19 693–705. 10.1007/s00792-015-0749-y PubMed DOI

Janssen P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA Genes. Appl. Environ. Microbiol. 72 1719–1728. 10.1128/AEM.72.3.1719 PubMed DOI PMC

Jansson J. K., Taş N. (2014). The microbial ecology of permafrost. Nat. Rev. Microbiol. 12 414–425. 10.1038/nrmicro3262 PubMed DOI

Kannaiah Goud R., Sarkar O., Venkata Mohan S. (2014). Regulation of biohydrogen production by heat-shock pretreatment facilitates selective enrichment of Clostridium sp. Int. J. Hydrogen Energy 39 7572–7586. 10.1016/j.ijhydene.2013.10.046 DOI

Kim J. H., Kim W. (2016). Tumebacillus soli sp. nov., isolated from non-rhizosphere soil. Int. J. Syst. Evol. Microbiol. 66 2192–2197. 10.1099/ijsem.0.001009 PubMed DOI

Kirschbaum M. U. F. (2004). Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Glob. Change Biol. 10 1870–1877. 10.1111/j.1365-2486.2004.00852.x DOI

Kirschbaum M. U. F. (2006). The temperature dependence of organic-matter decomposition – Still a topic of debate. Soil Biol. Biochem. 38 2510–2518. 10.1016/j.soilbio.2006.01.030 DOI

Knapp D. G., Pintye A., Kovács G. M. (2012). The dark side is not fastidious – dark septate endophytic fungi of native and invasive plants of semiarid sandy areas. PLoS One 7:e32570. 10.1371/journal.pone.0032570 PubMed DOI PMC

Knoblauch C., Beer C., Sosnin A., Wagner D., Pfeiffer E. M. (2013). Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob. Change Biol. 19 1160–1172. 10.1111/gcb.12116 PubMed DOI

Koponen H. T., Jaakkola T., Keinänen-Toivola M. M., Kaipainen S., Tuomainen J., Servomaa K., et al. (2006). Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles. Soil Biol. Biochem. 38 1861–1871. 10.1016/j.soilbio.2005.12.010 DOI

Mackelprang R., Saleska S. R., Jacobsen C. S., Jansson J. K., Taş N. (2016). Permafrost meta-omics and climate change. Ann. Rev. Earth Planet. Sci. 44 439–462. 10.1146/annurev-earth-060614-105126 DOI

Margesin R., Miteva V. (2011). Diversity and ecology of psychrophilic microorganisms. Res. Microbiol. 162 346–361. 10.1016/j.resmic.2010.12.004 PubMed DOI

Martin M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17 10–12. 10.14806/ej.17.1.200 DOI

Marx M. C., Wood M., Jarvis S. C. (2001). A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33 1633–1640. 10.1016/S0038-0717(01)00079-7 DOI

Mei R., Narihiro T., Nobu M. K., Liu W. T. (2016). Effects of heat shocks on microbial community structure and microbial activity of a methanogenic enrichment degrading benzoate. Lett. Appl. Microbiol. 63 356–362. 10.1111/lam.12629 PubMed DOI

Nikolenko S. I., Korobeynikov A. I., Alekseyev M. A. (2013). BayesHammer: bayesian clustering for error correction in single-cell sequencing. BMC Genomics 14(Suppl. 1):S7. 10.1186/1471-2164-14-S1-S7 PubMed DOI PMC

Nikrad M. P., Kerkhof L. J., Häggblom M. M. (2016). The subzero microbiome: microbial activity in frozen and thawing soils. FEMS Microbiol. Ecol. 92 1–16. 10.1093/femsec/fiw081 PubMed DOI

Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2018). Vegan: Community Ecology Package. R package version 2.5-3. Available at: https://cran.r-project.org/web/packages/vegan/index.html

Ozerskaya S. M., Kochkina G. A., Ivanushkina N. E., Gilichinsky D. A. (2009). “Fungi in permafrost,” in Permafrost Soils, ed. Margesin R. (Berlin: Springer; ), 85–95. 10.1007/978-3-540-69371-0_7 DOI

Pewe T. (1995). Permafrost. Encyclopaeida Britannica 20 752–759.

R Core Team (2017). R: A Language and Environment for Statistical Computing. Vienna: R foundation for Statistical Computing.

Riah-Anglet W., Trinsoutrot-Gattin I., Martin-Laurent F., Laroche-Ajzenberg E., Norini M. P., Latour X., et al. (2015). Soil microbial community structure and function relationships: a heat stress experiment. Appl. Soil Ecol. 86 121–130. 10.1016/j.apsoil.2014.10.001 DOI

Rime T., Hartmann M., Stierli B., Anesio A. M., Frey B. (2016). Assimilation of microbial and plant carbon by active prokaryotic and fungal populations in glacial forefields. Soil Biol. Biochem. 98 30–41. 10.1016/j.soilbio.2016.03.012 DOI

Rinnan R., Michelsen A., Bååth E., Jonasson S. (2007). Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob. Change Biol. 13 28–39. 10.1111/j.1365-2486.2006.01263.x DOI

Samarkin V. A., Madigan M. T., Bowles M. W., Casciotti K. L., Priscu J. C., McKay C. P. (2010). Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat. Geosci. 3 341–344. 10.1038/ngeo847 DOI

Sawicka J. E., Robador A., Hubert C., Jørgensen B. B. (2010). Effects of freeze – thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat. ISME J. 4 585–594. 10.1038/ismej.2009.140 PubMed DOI

Schimel J. P., Mikan C. (2005). Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle. Soil Biol. Biochem. 37 1411–1418. 10.1016/j.soilbio.2004.12.011 DOI

Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. (2009). Introducing mothur: opensource, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75 7537–7541. 10.1128/AEM.01541-09 PubMed DOI PMC

Schuur E. A. G., Bockheim J., Canadell J. G., Euskirchen E., Field C. B., Goryachkin S. V., et al. (2008). Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience 58 701–714. 10.1641/B580807 DOI

Schuur E. A. G., McGuire A. D., Schädel C., Grosse G., Harden J. W., Hayes D. J., et al. (2015). Climate change and the permafrost carbon feedback. Nature 520 171–179. 10.1038/nature14338 PubMed DOI

Starr E. P., Shi S., Blazewicz S. J., Probst A. J., Herman D. J., Firestone M. K., et al. (2018). Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome 6 1–12. 10.1186/s40168-018-0499-z PubMed DOI PMC

Sun S., Li S., Avera B. N., Strahm B. D., Badgley B. D. (2017). Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration. Appl. Environ. Microbiol. 83 1–14. 10.1128/aem.00966-17 PubMed DOI PMC

Ter Braak C. J. F., Šmilauer P. (2012). Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0. Ithaca, NY: Microcomputer Power.

Tveit A. T., Urich T., Svenning M. M. (2014). Metatranscriptomic analysis of arctic peat soil microbiota. Appl. Environ. Microbiol. 80 5761–5772. 10.1128/AEM.01030-14 PubMed DOI PMC

Wang Q., Garrity G. M., Tiedje J. M., Cole J. R. (2007). Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73 5261–5267. 10.1128/AEM.00062-07 PubMed DOI PMC

Wild B., Schnecker J., Alves R. J. E., Barsukov P., Bárta J., Čapek P., et al. (2014). Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biol. Biochem. 75 143–151. 10.1016/j.soilbio.2014.04.014 PubMed DOI PMC

Wu J., Xiong J., Hu C., Shi Y., Wang K., Zhang D. (2015). Temperature sensitivity of soil bacterial community along contrasting warming gradient. Appl. Soil Ecol. 94 40–48. 10.1016/j.apsoil.2015.04.018 DOI

Xiong J., Chu H., Sun H., Xue X., Peng F., Zhang H. (2014a). Divergent responses of soil fungi functional groups to short-term warming. Microb. Ecol. 68 708–715. 10.1007/s00248-014-0385-6 PubMed DOI

Xiong J., Sun H., Peng F., Zhang H., Xue X., Gibbons S. M., et al. (2014b). Characterizing changes in soil bacterial community structure in response to short-term warming. FEMS Microbiol. Ecol. 89 281–292. 10.1111/1574-6941.12289 PubMed DOI

Yergeau E., Bokhorst S., Kang S., Zhou J. Z., Greer C. W., Aerts R., et al. (2012). Shifts in soil microorganisms in response to warming are 755 consistent across a range of Antarctic environments. ISME J. 6 692–702. 10.1038/ismej.2011.124 PubMed DOI PMC

Yergeau E., Kang S., He Z., Zhou J., Kowalchuk G. A. (2007). Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME J. 1 163–179. 10.1038/ismej.2007.24 PubMed DOI

Yergeau E., Kowalchuk G. A. (2008). Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency. Environ. Microbiol. 10 2223–2235. 10.1111/j.1462-2920.2008.01644.x PubMed DOI

Yuste J. C., Peñuelas J., Estiarte M., Garcia-Mas J., Mattana S., Ogaya R., et al. (2011). Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob. Change Biol. 17 1475–1486. 10.1111/j.1365-2486.2010.02300.x DOI

Zenklusen Mutter E., Blanchet J., Phillips M. (2010). Analysis of ground temperature trends in Alpine permafrost using generalized least squares. J. Geophys. Res. Earth 115:F04009.

Zhou J., Xue K., Xie J., Deng Y., Wu L., Cheng X., et al. (2012). Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2 106–110. 10.1038/nclimate1331 DOI

Zhu P., Chen R., Song Y., Liu G., Chen T., Zhang W. (2015). Effects of land cover conversion on soil properties and soil microbial activity in an alpine meadow on the Tibetan Plateau. Environ. Earth Sci. 74 4523–4533. 10.1007/s12665-015-4509-1 DOI

Zimmermann S., Frey B. (2002). Soil respiration and microbial properties in an acid forest soil: effects of wood ash. Soil Biol. Biochem. 34 1727–1737. 10.1016/S0038-0717(02)00160-8 DOI

Zumsteg A., Bååth E., Stierli B., Zeyer J., Frey B. (2013). Bacterial and fungal community responses to reciprocal soil transfer along a temperature and soil moisture gradient in a glacier forefield. Soil Biol. Biochem. 61 121–132. 10.1016/j.soilbio.2013.02.017 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...