Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
I 370
Austrian Science Fund FWF - Austria
PubMed
25089062
PubMed Central
PMC4064687
DOI
10.1016/j.soilbio.2014.04.014
PII: S0038-0717(14)00134-5
Knihovny.cz E-zdroje
- Klíčová slova
- Organic matter decomposition, Permafrost, Phospholipid fatty acid (PLFA), Priming, Tundra,
- Publikační typ
- časopisecké články MeSH
Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the decomposition of older SOM ("priming effect"). We here report on a SOM priming experiment in the active layer of a permafrost soil from the central Siberian Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e., poorly decomposed topsoil material subducted into the subsoil by freeze-thaw processes) to additions of 13C-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to approximately 1% of soil organic carbon). SOM decomposition in the topsoil was barely affected by higher availability of organic compounds, whereas SOM decomposition in both subsoil horizons responded strongly. In the mineral subsoil, SOM decomposition increased by a factor of two to three after any substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer community was limited in energy to break down more complex components of SOM. In the cryoturbated horizon, SOM decomposition increased by a factor of two after addition of amino acids or protein, but was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation. Since the stimulation of SOM decomposition in cryoturbated material was not connected to microbial growth or to a change in microbial community composition, the additional nitrogen was likely invested in the production of extracellular enzymes required for SOM decomposition. Our findings provide a first mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability of organic carbon or nitrogen, e.g., by increased plant productivity, can change the decomposition of SOM stored in deeper layers of permafrost soils, with possible repercussions on the global climate.
Leibniz University Hannover Institute of Soil Science Hannover Germany
Siberian Branch of Russian Academy of Sciences Central Siberian Botanical Garden Novosibirsk Russia
Siberian Branch of Russian Academy of Sciences VN Sukachev Institute of Forest Krasnoyarsk Russia
University of South Bohemia Department of Ecosystems Biology České Budějovice Czech Republic
Zobrazit více v PubMed
Allison S.D., LeBauer D.S., Ofrecio M.R., Reyes R., Ta A., Tran T.M. Low levels of nitrogen addition stimulate decomposition by boreal forest fungi. Soil Biology & Biochemistry. 2009;41:293–302.
Bhatt U.S., Walker D.A., Raynolds M.K., Comiso J.C., Epstein H.E., Jia G., Gens R., Pinzon J.E., Tucker C.J., Tweedie C.E., Webber P.J. Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interactions. 2010;14:1–20.
Bingeman C.W., Varner J.E., Martin W.P. The effect of the addition of organic materials on the decomposition of an organic soil. Soil Science Society of America Journal. 1953;17:34–38.
Blagodatskaya E., Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils. 2008;45:115–131.
Bockheim J.G. Importance of cryoturbation in redistributing organic carbon in permafrost-affected soils. Soil Science Society of America Journal. 2007;71:1335.
CAVM Team . U.S. Fish and Wildlife Service; Anchorage, Alaska: 2003. Circumpolar Arctic Vegetation Map. (1:7,500,000 scale), Conservation of Arctic Flora and Fauna (CAFF) Map No. 1.
Conant R.T., Ryan M.G., Ågren G.I., Birge H.E., Davidson E.A., Eliasson P.E., Evans S.E., Frey S.D., Giardina C.P., Hopkins F.M., Hyvönen R., Kirschbaum M.U., Lavallee J.M., Leifeld J., Parton W.J., Steinweg J.M., Wallenstein M.D., Wetterstedt J.Å., Bradford M.A. Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Global Change Biology. 2011;17:3392–3404.
Craine J., Morrow C., Fierer N. Microbial nitrogen limitation increases decomposition. Ecology. 2007;88:2105–2113. PubMed
de Boer W., Folman L.B., Summerbell R.C., Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews. 2005;29:795–811. PubMed
Dijkstra F.A., Carrillo Y., Pendall E., Morgan J.A. Rhizosphere priming: a nutrient perspective. Frontiers in Microbiology. 2013;4:1–8. PubMed PMC
Fontaine S., Barot S., Barré P., Bdioui N., Mary B., Rumpel C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature. 2007;450:277–280. PubMed
Fontaine S., Mariotti A., Abbadie L. The priming effect of organic matter: a question of microbial competition? Soil Biology & Biochemistry. 2003;35:837–843.
Frostegård Å., Tunlid A., Bååth E. Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods. 1991;14:151–163.
Gittel A., Bárta J., Kohoutová I., Mikutta R., Owens S., Gilbert J., Schnecker J., Wild B., Hannisdal B., Maerz J., Lashchinskiy N., Čapek P., Šantrůčková H., Gentsch N., Shibistova O., Guggenberger G., Richter A., Torsvik V.L., Schleper C., Urich T. Distinct microbial communities associated with buried soils in the Siberian tundra. The ISME Journal. 2014;8:841–853. PubMed PMC
Goslee S.C., Urban D.L. The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software. 2007;22:1–19.
Grman E., Robinson T.M. Resource availability and imbalance affect plant-mycorrhizal interactions: a field test of three hypotheses. Ecology. 2013;94:62–67. PubMed
Harden J.W., Koven C.D., Ping C., Hugelius G., McGuire A.D., Camill P., Jorgenson T., Kuhry P., Michaelson G.J., O'Donnell J.A., Schuur E.A.G., Taronocai C., Johnson K., Grosse G. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophysical Research Letters. 2012;39:L15704.
Hartley I.P., Garnett M.H., Sommerkorn M., Hopkins D.W., Fletcher B.J., Sloan V.L., Phoenix G.K., Wookey P.A. A potential loss of carbon associated with greater plant growth in the European Arctic. Nature Climate Change. 2012;2:875–879.
Hartley I.P., Hopkins D.W., Garnett M.H., Sommerkorn M., Wookey P.A. Soil microbial respiration in arctic soil does not acclimate to temperature. Ecology Letters. 2008;11:1092–1100. PubMed
Hobbie S.E. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs. 1996;66:503–522.
Hugelius G., Kuhry P., Tarnocai C., Virtanen T. Soil organic carbon pools in a periglacial landscape: a case study from the central Canadian Arctic. Permafrost and Periglacial Processes. 2010;21:16–29.
IPCC . Cambridge University Press; Cambridge, UK: 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
Inselsbacher E., Ripka K., Klaubauf S., Fedosoyenko D., Hackl E., Gorfer M., Hood-Novotny R., von Wirén N., Sessitsch A., Zechmeister-Boltenstern S., Wanek W., Strauss J. A cost-effective high-throughput microcosm system for studying nitrogen dynamics at the plant-microbe-soil interface. Plant and Soil. 2009;317:293–307.
IUSS Working Group WRB . 2007. World Reference Base for Soil Resources 2006, First Update 2007. Rome.
Kaiser C., Frank A., Wild B., Koranda M., Richter A. Negligible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18:2ω6,9 and 18:1ω9. Soil Biology & Biochemistry. 2010;42:1650–1652. PubMed PMC
Kaiser C., Fuchslueger L., Koranda M., Gorfer M., Stange C.F., Kitzler B., Rasche F., Strauss J., Sessitsch A., Zechmeister-Boltenstern S., Richter A. Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation. Ecology. 2011;92:1036–1051. PubMed
Kaiser C., Koranda M., Kitzler B., Fuchslueger L., Schnecker J., Schweiger P., Rasche F., Zechmeister-Boltenstern S., Sessitsch A., Richter A. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytologist. 2010;187:843–858. PubMed PMC
Kaiser C., Meyer H., Biasi C., Rusalimova O., Barsukov P., Richter A. Conservation of soil organic matter through cryoturbation in arctic soils in Siberia. Journal of Geophysical Research. 2007;112:G02017.
Koranda M., Kaiser C., Fuchslueger L., Kitzler B., Sessitsch A., Zechmeister-Boltenstern S., Richter A. Fungal and bacterial utilization of organic substrates depends on substrate complexity and N availability. FEMS Microbiology Ecology. 2014;87:142–152. PubMed
Nadelhoffer K.J., Giblin A.E., Shaver G.R., Laundre J.A. Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology. 1991;72:242–253.
Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O'Hara R.B., Simpson G.L., Solymos P., Stevens M.H., Wagner H. 2012. vegan: Community Ecology Package. R Package Version 2.0-3.
Olk D.C., Cassman K.G., Schmidt-Rohr K., Anders M.M., Mao J.D., Deenik J.L. Chemical stabilization of soil organic nitrogen by phenolic lignin residues in anaerobic agroecosystems. Soil Biology & Biochemistry. 2006;38:3303–3312.
R Development Core Team . R Foundation for Statistical Computing; 2012. R: a Language and Environment for Statistical Computing.
Rousk J., Bååth E. Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiology Ecology. 2007;62:258–267. PubMed
Schaeffer S.M., Sharp E., Schimel J.P., Welker J.M. Soil–plant N processes in a High Arctic ecosystem, NW Greenland are altered by longterm experimental warming and higher rainfall. Global Change Biology. 2013;19:3529–3539. PubMed
Schimel J.P., Bilbrough C., Welker J.M. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biology & Biochemistry. 2004;36:217–227.
Schnecker J., Wild B., Fuchslueger L., Richter A. A field method to store samples from temperate mountain grassland soils for analysis of phospholipid fatty acids. Soil Biology & Biochemistry. 2012;51:81–83. PubMed PMC
Schnecker J., Wild B., Hofhansl F., Alves R.J.E., Bárta J., Čapek P., Fuchslueger L., Gentsch N., Gittel A., Guggenberger G., Hofer A., Kienzl S., Knoltsch A., Lashchinskiy N., Mikutta R., Šantrůčková H., Shibistova O., Takriti M., Urich T., Weltin G., Richter A. Effects of soil organic matter properties and microbial community composition on enzyme activities in cryoturbated arctic soils. PLoS One. 2014;9:e94076. PubMed PMC
Sistla S.A., Asao S., Schimel J.P. Detecting microbial N-limitation in tussock tundra soil: implications for Arctic soil organic carbon cycling. Soil Biology & Biochemistry. 2012;55:78–84.
Sistla S.A., Moore J.C., Simpson R.T., Gough L., Shaver G.R., Schimel J.P. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature. 2013;497:615–618. PubMed
Soil Survey Staff . second ed. 1999. Soil Taxonomy: a Basic System of Soil Classification for Making and Interpreting Soil Surveys. U. S. Department of Agriculture Handbook 436.
Strickland M.S., Rousk J. Considering fungal:bacterial dominance in soils – methods, controls, and ecosystem implications. Soil Biology & Biochemistry. 2010;42:1385–1395.
Tarnocai C., Canadell J.G., Schuur E.A., Kuhry P., Mazhitova G., Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles. 2009;23:GB2023.
Weintraub M.N., Schimel J.P. Seasonal protein dynamics in Alaskan arctic tundra soils. Soil Biology & Biochemistry. 2005;37:1469–1475.
Wild B., Schnecker J., Bárta J., Čapek P., Guggenberger G., Hofhansl F., Kaiser C., Lashchinsky N., Mikutta R., Mooshammer M., Šantrůčková H., Shibistova O., Urich T., Zimov S.A., Richter A. Nitrogen dynamics inTurbic Cryosols from Siberia and Greenland. Soil Biology & Biochemistry. 2013;67:85–93. PubMed PMC
Wild B., Wanek W., Postl W., Richter A. Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant Kalanchoë daigremontiana. Journal of Experimental Botany. 2010;61:1375–1383. PubMed PMC
Xu C., Guo L., Ping C., White D.M. Chemical and isotopic characterization of size-fractionated organic matter from cryoturbated tundra soils, northern Alaska. Journal of Geophysical Research. 2009;114:G03002.
Xu L., Myneni R.B., Chapin F.S., III, Callaghan T.V., Pinzon J.E., Tucker C.J., Zhu Z., Bi J., Ciais P., Tømmervik H., Euskirchen E.S., Forbes B.C., Piao S.L., Anderson B.T., Ganguly S., Nemani R.R., Goetz S.J., Beck P.S., Bunn A.G., Cao C., Stroeve J.C. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change. 2013;3:581–586.