Distinct microbial communities associated with buried soils in the Siberian tundra

. 2014 Apr ; 8 (4) : 841-53. [epub] 20131212

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24335828

Grantová podpora
I 370 Austrian Science Fund FWF - Austria

Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze-thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes.

] Austrian Polar Research Institute Vienna Austria [2] Division of Archaea Biology and Ecogenomics Department of Ecogenomics and Systems Biology University of Vienna Vienna Austria

] Austrian Polar Research Institute Vienna Austria [2] Division of Terrestrial Ecosystem Research Department of Microbiology and Ecosystem Science University of Vienna Vienna Austria

] Department of Biology Centre for Geobiology University of Bergen Bergen Norway [2] Austrian Polar Research Institute Vienna Austria

] Department of Biology Centre for Geobiology University of Bergen Bergen Norway [2] Austrian Polar Research Institute Vienna Austria [3] Division of Archaea Biology and Ecogenomics Department of Ecogenomics and Systems Biology University of Vienna Vienna Austria

] Institut für Bodenkunde Leibniz Universität Hannover Hannover Germany [2] VN Sukachev Institute of Forest Siberian Branch of Russian Academy of Sciences Akademgorodok Russia

] Institute of Genomics and Systems Biology Argonne National Laboratory Argonne IL USA [2] Computation Institute University of Chicago Chicago IL USA

] Institute of Genomics and Systems Biology Argonne National Laboratory Argonne IL USA [2] Department of Ecology and Evolution University of Chicago Chicago IL USA

Central Siberian Botanical Garden Siberian Branch of Russian Academy of Sciences Novosibirsk Russia

Department of Biology Centre for Geobiology University of Bergen Bergen Norway

Department of Earth Science Centre for Geobiology University of Bergen Bergen Norway

Department of Ecosystems Biology University of South Bohemia České Budějovice Czech Republic

Division of Ecosystem Modelling Institute of Coastal Research Helmholtz Zentrum Geesthacht Geesthacht Germany

Institut für Bodenkunde Leibniz Universität Hannover Hannover Germany

Zobrazit více v PubMed

Abarenkov K, Henrik Nilsson R, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol. 2010;186:281–285. PubMed

Aitchison J. The statistical analysis of compositional data. J R Stat Soc Ser B (Methodol) 1982;44:139–177.

Allison SD. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol Lett. 2005;8:626–635.

Ausec L, Zakrzewski M, Goesmann A, Schlüter A, Mandic-Mulec I. Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS One. 2011;6:e25724. PubMed PMC

Bailey VL, Smith JL, Bolton H., Jr Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Bio Biochem. 2002;34:997–1007.

Baldrian P.2008Enzymes of saprotrophic basidiomycetesIn: Boddy L, Frankland JC, West Pv (eds). Ecology of Saprotrophic Basidiomycetes Academic Press: London; UK, pp19–41.

Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N. Examining the global distribution of dominant archaeal populations in soil. ISME J. 2011;5:908–917. PubMed PMC

Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Bio Biochem. 2011;43:1450–1455. PubMed PMC

Bockheim JG. Importance of cryoturbation in redistributing organic carbon in permafrost-affected soils. Soil Sci Soc Am J. 2007;71:1335–1342.

Boer Wd, Folman LB, Summerbell RC, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 2005;29:795–811. PubMed

Borneman J, Hartin RJ. PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol. 2000;66:4356–4360. PubMed PMC

Bugg TDH, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol. 2011;22:394–400. PubMed

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–336. PubMed PMC

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–4522. PubMed PMC

Coolen MJL, van de Giessen J, Zhu EY, Wuchter C. Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw. Environ Microbiol. 2011;13:2299–2314. PubMed

Daims H, Brühl A, Amann R, Schleifer KH, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1999;22:434–444. PubMed

Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–173. PubMed

DeAngelis KM, Allgaier M, Chavarria Y, Fortney JL, Hugenholtz P, Simmons B, et al. Characterization of trapped lignin-degrading microbes in tropical forest soil. PLoS One. 2011;6:e19306. PubMed PMC

Deckers JA, Driessen PM, Nachtergaele FO, Spaargaren OC.2002World Reference Base for Soil ResourcesIn: Lal R (eds). Encyclopedia of Soil Science Marcel Dekker: New York, NY, USA; 1446–1451.

Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biol. 2012;18:1781–1796.

Eilers KG, Debenport S, Anderson S, Fierer N. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Bio Biochem. 2012;50:58–65.

Fierer N, Schimel JP, Holden PA. Variations in microbial community composition through two soil depth profiles. Soil Bio Biochem. 2003;35:167–176.

Fierer N, Jackson JA, Vilgalys R, Jackson RB. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol. 2005;71:4117–4120. PubMed PMC

Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–1364. PubMed

Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–118. PubMed

Hartmann M, Lee S, Hallam SJ, Mohn WW. Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands. Environ Microbiol. 2009;11:3045–3062. PubMed

Hobbie E, Ouimette A, Schuur EG, Kierstead D, Trappe J, Bendiksen K, et al. Radiocarbon evidence for the mining of organic nitrogen from soil by mycorrhizal fungi. Biogeochemistry. 2013;114:381–389.

Hugelius G, Kuhry P, Tarnocai C, Virtanen T. Soil organic carbon pools in a periglacial landscape: a case study from the central Canadian Arctic. Permafrost Periglacial Processes. 2010;21:16–29.

Intergovernmental Panel on Climate Change (IPCC) Climate Change 2007: The Scientific Basis. Cambridge University Press: Cambride, UK; 2007.

Johnson SS, Hebsgaard MB, Christensen TR, Mastepanov M, Nielsen R, Munch K, et al. Ancient bacteria show evidence of DNA repair. Proc Natl Acad Sci USA. 2007;104:14401–14405. PubMed PMC

Jurgens G, Lindström K, Saano A. Novel group within the kingdom Crenarchaeota from boreal forest soil. Appl Environ Microbiol. 1997;63:803–805. PubMed PMC

Jørgensen SL, Hannisdal B, Lanzén A, Baumberger T, Flesland K, Fonseca R, et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc Natl Acad Sci USA. 2012;109:E2846–E2855. PubMed PMC

Kaiser C, Meyer H, Biasi C, Rusalimova O, Barsukov P, Richter A. Conservation of soil organic matter through cryoturbation in arctic soils in Siberia. J Geophys Res. 2007;112:G02017.

Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006;442:806–809. PubMed

Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, et al. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 2007;173:611–620. PubMed

Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res. 2007;35:e120. PubMed PMC

Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature. 2011;480:368–371. PubMed

Martín-Fernández JA, Barceló-Vidal C, Pawlowsky-Glahn V. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Math Geol. 2003;35:253–278.

McCarthy AJ. Lignocellulose-degrading actinomycetes. FEMS Microbiol Lett. 1987;46:145–163.

McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr. 2009;79:523–555.

McMahon SK, Wallenstein MD, Schimel JP. A cross-seasonal comparison of active and total bacterial community composition in Arctic tundra soil using bromodeoxyuridine labeling. Soil Bio Biochem. 2011;43:287–295.

Morris JJ, Lenski RE, Zinser ER.2012The Black Queen hypothesis: evolution of dependencies through adaptive gene loss mBio 3piie00036–12. PubMed PMC

Orwin KH, Kirschbaum MUF, St, John MG, Dickie IA. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett. 2011;14:493–502. PubMed

Parks DH, Beiko RG. Identifying biologically relevant differences between metagenomic communities. Bioinformatics. 2010;26:715–721. PubMed

Read DJ, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance. New Phytol. 2003;157:475–492. PubMed

Read DJ, Leake JR, Perez-Moreno J. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canad J Bot. 2004;82:1243–1263.

Rineau F, Shah F, Smits MM, Persson P, Johansson T, Carleer R, et al. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. ISME J. 2013;7:2010–2022. PubMed PMC

Roes-Hill M, Khan N, Burton S. Actinobacterial peroxidases: an unexplored resource for biocatalysis. Appl Biochem Biotechnol. 2011;164:681–713. PubMed

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541. PubMed PMC

Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56. PubMed

Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience. 2008;58:701–714.

Schuur EAG, Abbott B. Climate change: High risk of permafrost thaw. Nature. 2011;480:32–33. PubMed

Soil Classification Working Group 1998The Canadian System of Soil Classification3rd ednNRC Research Press: Ottawa, ON, Canada

Talbot JM, Allison SD, Treseder KK. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecol. 2008;22:955–963.

Talbot JM, Treseder KK. Controls over mycorrhizal uptake of organic nitrogen. Pedobiologia. 2010;53:169–179.

Talbot JM, Bruns TD, Smith DP, Branco S, Glassman SI, Erlandson S, et al. Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Bio Biochem. 2013;57:282–291.

Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles. 2009;23:GB2023.

Team RDC . R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria; 2012.

Ter Braak CJF, Šmilauer P.2012. Canoco Reference Manual and User's Guide: software for ordination, version 5.0.

Teske A, Sorensen KB. Uncultured archaea in deep marine subsurface sediments: have we caught them all. ISME J. 2007;2:3–18. PubMed

Timling I, Taylor DL. Peeking through a frosty window: molecular insights into the ecology of Arctic soil fungi. Fung Ecol. 2012;5:419–429.

Tveit A, Schwacke R, Svenning MM, Urich T. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J. 2012;7:299–311. PubMed PMC

Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One. 2008;3:e2527. PubMed PMC

Waldrop MP, Wickland KP, White R, Berhe AA, Harden JW, Romanovsky VE. Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Global Change Biol. 2010;16:2543–2554.

Walker DA, Raynolds MK, Daniëls FJA, Einarsson E, Elvebakk A, Gould WA, et al. The circumpolar Arctic vegetation map. J Veg Sci. 2005;16:267–282.

White TJ, Bruns T, Lee S, Taylor J.1990Amplification and direct sequencing of fungal ribosomal RNA genes for phylogeneticsIn: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds). PCR Protocols, A Guide to Methods and Applications Academic Press: London; UK, pp315–322.

Wild B, Schnecker J, Bárta J, Čapek P, Guggenberger G, Hofhansl F, et al. Nitrogen dynamics in Turbic Cryosols from Siberia and Greenland. Soil Bio Biochem. 2013;67:85–93. PubMed PMC

Yergeau E, Hogues H, Whyte LG, Greer CW. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J. 2010;4:1206–1214. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...