Distinct microbial communities associated with buried soils in the Siberian tundra
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
I 370
Austrian Science Fund FWF - Austria
PubMed
24335828
PubMed Central
PMC3960545
DOI
10.1038/ismej.2013.219
PII: ismej2013219
Knihovny.cz E-zdroje
- MeSH
- Archaea klasifikace genetika fyziologie MeSH
- Bacteria klasifikace genetika MeSH
- biodiverzita * MeSH
- ekosystém * MeSH
- enzymy metabolismus MeSH
- fyziologie bakterií * MeSH
- geny rRNA genetika MeSH
- houby klasifikace genetika fyziologie MeSH
- mezerníky ribozomální DNA genetika MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Sibiř MeSH
- Názvy látek
- enzymy MeSH
- mezerníky ribozomální DNA MeSH
- půda MeSH
Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze-thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes.
Central Siberian Botanical Garden Siberian Branch of Russian Academy of Sciences Novosibirsk Russia
Department of Biology Centre for Geobiology University of Bergen Bergen Norway
Department of Earth Science Centre for Geobiology University of Bergen Bergen Norway
Department of Ecosystems Biology University of South Bohemia České Budějovice Czech Republic
Institut für Bodenkunde Leibniz Universität Hannover Hannover Germany
Zobrazit více v PubMed
Abarenkov K, Henrik Nilsson R, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol. 2010;186:281–285. PubMed
Aitchison J. The statistical analysis of compositional data. J R Stat Soc Ser B (Methodol) 1982;44:139–177.
Allison SD. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol Lett. 2005;8:626–635.
Ausec L, Zakrzewski M, Goesmann A, Schlüter A, Mandic-Mulec I. Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS One. 2011;6:e25724. PubMed PMC
Bailey VL, Smith JL, Bolton H., Jr Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Bio Biochem. 2002;34:997–1007.
Baldrian P.2008Enzymes of saprotrophic basidiomycetesIn: Boddy L, Frankland JC, West Pv (eds). Ecology of Saprotrophic Basidiomycetes Academic Press: London; UK, pp19–41.
Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N. Examining the global distribution of dominant archaeal populations in soil. ISME J. 2011;5:908–917. PubMed PMC
Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Bio Biochem. 2011;43:1450–1455. PubMed PMC
Bockheim JG. Importance of cryoturbation in redistributing organic carbon in permafrost-affected soils. Soil Sci Soc Am J. 2007;71:1335–1342.
Boer Wd, Folman LB, Summerbell RC, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 2005;29:795–811. PubMed
Borneman J, Hartin RJ. PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol. 2000;66:4356–4360. PubMed PMC
Bugg TDH, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol. 2011;22:394–400. PubMed
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–336. PubMed PMC
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–4522. PubMed PMC
Coolen MJL, van de Giessen J, Zhu EY, Wuchter C. Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw. Environ Microbiol. 2011;13:2299–2314. PubMed
Daims H, Brühl A, Amann R, Schleifer KH, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1999;22:434–444. PubMed
Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–173. PubMed
DeAngelis KM, Allgaier M, Chavarria Y, Fortney JL, Hugenholtz P, Simmons B, et al. Characterization of trapped lignin-degrading microbes in tropical forest soil. PLoS One. 2011;6:e19306. PubMed PMC
Deckers JA, Driessen PM, Nachtergaele FO, Spaargaren OC.2002World Reference Base for Soil ResourcesIn: Lal R (eds). Encyclopedia of Soil Science Marcel Dekker: New York, NY, USA; 1446–1451.
Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biol. 2012;18:1781–1796.
Eilers KG, Debenport S, Anderson S, Fierer N. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Bio Biochem. 2012;50:58–65.
Fierer N, Schimel JP, Holden PA. Variations in microbial community composition through two soil depth profiles. Soil Bio Biochem. 2003;35:167–176.
Fierer N, Jackson JA, Vilgalys R, Jackson RB. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol. 2005;71:4117–4120. PubMed PMC
Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–1364. PubMed
Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–118. PubMed
Hartmann M, Lee S, Hallam SJ, Mohn WW. Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands. Environ Microbiol. 2009;11:3045–3062. PubMed
Hobbie E, Ouimette A, Schuur EG, Kierstead D, Trappe J, Bendiksen K, et al. Radiocarbon evidence for the mining of organic nitrogen from soil by mycorrhizal fungi. Biogeochemistry. 2013;114:381–389.
Hugelius G, Kuhry P, Tarnocai C, Virtanen T. Soil organic carbon pools in a periglacial landscape: a case study from the central Canadian Arctic. Permafrost Periglacial Processes. 2010;21:16–29.
Intergovernmental Panel on Climate Change (IPCC) Climate Change 2007: The Scientific Basis. Cambridge University Press: Cambride, UK; 2007.
Johnson SS, Hebsgaard MB, Christensen TR, Mastepanov M, Nielsen R, Munch K, et al. Ancient bacteria show evidence of DNA repair. Proc Natl Acad Sci USA. 2007;104:14401–14405. PubMed PMC
Jurgens G, Lindström K, Saano A. Novel group within the kingdom Crenarchaeota from boreal forest soil. Appl Environ Microbiol. 1997;63:803–805. PubMed PMC
Jørgensen SL, Hannisdal B, Lanzén A, Baumberger T, Flesland K, Fonseca R, et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc Natl Acad Sci USA. 2012;109:E2846–E2855. PubMed PMC
Kaiser C, Meyer H, Biasi C, Rusalimova O, Barsukov P, Richter A. Conservation of soil organic matter through cryoturbation in arctic soils in Siberia. J Geophys Res. 2007;112:G02017.
Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006;442:806–809. PubMed
Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, et al. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 2007;173:611–620. PubMed
Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res. 2007;35:e120. PubMed PMC
Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature. 2011;480:368–371. PubMed
Martín-Fernández JA, Barceló-Vidal C, Pawlowsky-Glahn V. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Math Geol. 2003;35:253–278.
McCarthy AJ. Lignocellulose-degrading actinomycetes. FEMS Microbiol Lett. 1987;46:145–163.
McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr. 2009;79:523–555.
McMahon SK, Wallenstein MD, Schimel JP. A cross-seasonal comparison of active and total bacterial community composition in Arctic tundra soil using bromodeoxyuridine labeling. Soil Bio Biochem. 2011;43:287–295.
Morris JJ, Lenski RE, Zinser ER.2012The Black Queen hypothesis: evolution of dependencies through adaptive gene loss mBio 3piie00036–12. PubMed PMC
Orwin KH, Kirschbaum MUF, St, John MG, Dickie IA. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett. 2011;14:493–502. PubMed
Parks DH, Beiko RG. Identifying biologically relevant differences between metagenomic communities. Bioinformatics. 2010;26:715–721. PubMed
Read DJ, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance. New Phytol. 2003;157:475–492. PubMed
Read DJ, Leake JR, Perez-Moreno J. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canad J Bot. 2004;82:1243–1263.
Rineau F, Shah F, Smits MM, Persson P, Johansson T, Carleer R, et al. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. ISME J. 2013;7:2010–2022. PubMed PMC
Roes-Hill M, Khan N, Burton S. Actinobacterial peroxidases: an unexplored resource for biocatalysis. Appl Biochem Biotechnol. 2011;164:681–713. PubMed
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541. PubMed PMC
Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56. PubMed
Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience. 2008;58:701–714.
Schuur EAG, Abbott B. Climate change: High risk of permafrost thaw. Nature. 2011;480:32–33. PubMed
Soil Classification Working Group 1998The Canadian System of Soil Classification3rd ednNRC Research Press: Ottawa, ON, Canada
Talbot JM, Allison SD, Treseder KK. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecol. 2008;22:955–963.
Talbot JM, Treseder KK. Controls over mycorrhizal uptake of organic nitrogen. Pedobiologia. 2010;53:169–179.
Talbot JM, Bruns TD, Smith DP, Branco S, Glassman SI, Erlandson S, et al. Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Bio Biochem. 2013;57:282–291.
Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles. 2009;23:GB2023.
Team RDC . R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria; 2012.
Ter Braak CJF, Šmilauer P.2012. Canoco Reference Manual and User's Guide: software for ordination, version 5.0.
Teske A, Sorensen KB. Uncultured archaea in deep marine subsurface sediments: have we caught them all. ISME J. 2007;2:3–18. PubMed
Timling I, Taylor DL. Peeking through a frosty window: molecular insights into the ecology of Arctic soil fungi. Fung Ecol. 2012;5:419–429.
Tveit A, Schwacke R, Svenning MM, Urich T. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J. 2012;7:299–311. PubMed PMC
Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One. 2008;3:e2527. PubMed PMC
Waldrop MP, Wickland KP, White R, Berhe AA, Harden JW, Romanovsky VE. Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Global Change Biol. 2010;16:2543–2554.
Walker DA, Raynolds MK, Daniëls FJA, Einarsson E, Elvebakk A, Gould WA, et al. The circumpolar Arctic vegetation map. J Veg Sci. 2005;16:267–282.
White TJ, Bruns T, Lee S, Taylor J.1990Amplification and direct sequencing of fungal ribosomal RNA genes for phylogeneticsIn: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds). PCR Protocols, A Guide to Methods and Applications Academic Press: London; UK, pp315–322.
Wild B, Schnecker J, Bárta J, Čapek P, Guggenberger G, Hofhansl F, et al. Nitrogen dynamics in Turbic Cryosols from Siberia and Greenland. Soil Bio Biochem. 2013;67:85–93. PubMed PMC
Yergeau E, Hogues H, Whyte LG, Greer CW. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J. 2010;4:1206–1214. PubMed