Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
I 370
Austrian Science Fund FWF - Austria
P 25369
Austrian Science Fund FWF - Austria
PubMed
25360132
PubMed Central
PMC4199454
DOI
10.3389/fmicb.2014.00541
Knihovny.cz E-zdroje
- Klíčová slova
- Greenland, climate change, extracellular enzyme activities, microbial communities, permafrost-affected soils,
- Publikační typ
- časopisecké články MeSH
Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation ("buried topsoils"), resulting from a decrease in fungal abundance compared to recent ("unburied") topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation.
Department of Biology Centre for Geobiology University of Bergen Bergen Norway
Department of Ecosystems Biology University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Allan J., Ronholm J., Mykytczuk N. C. S., Greer C. W., Onstott T. C., Whyte L. G. (2014). Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils. Environ. Microbiol. Rep. 6, 136–144. 10.1111/1758-2229.12139 PubMed DOI
Alves R. J. E., Wanek W., Zappe A., Richter A., Svenning M. M., Schleper C., et al. . (2013). Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea. ISME J. 7, 1620–1631. 10.1038/ismej.2013.35 PubMed DOI PMC
Ausec L., van Elsas J. D., Mandic-Mulec I. (2011a). Two- and three-domain bacterial laccase-like genes are present in drained peat soils. Soil Biol. Biochem. 43, 975–983. 10.1016/j.soilbio.2011.01.013 DOI
Ausec L., Zakrzewski M., Goesmann A., Schlüter A., Mandic-Mulec I. (2011b). Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS ONE 6:e25724. 10.1371/journal.pone.0025724 PubMed DOI PMC
Barbier B. A., Dziduch I., Liebner S., Ganzert L., Lantuit H., Pollard W., et al. . (2012). Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes. FEMS Microbiol. Ecol. 82, 287–302. 10.1111/j.1574-6941.2012.01332.x PubMed DOI
Bárcena T. G., Finster K. W., Yde J. C. (2011). Spatial patterns of soil development, methane oxidation, and methanotrophic diversity along a receding glacier forefield, Southeast Greenland. Arct. Antarct. Alp. Res. 43, 178–188. 10.1657/1938-4246-43.2.178 DOI
Biasi C., Meyer H., Rusalimova O., Hämmerle R., Kaiser C., Baranyi C., et al. . (2008). Initial effects of experimental warming on carbon exchange rates, plant growth and microbial dynamics of a lichen-rich dwarf shrub tundra in Siberia. Plant Soil 307, 191–205. 10.1007/s11104-008-9596-2 DOI
Boer W., de Folman L. B., Summerbell R. C., Boddy L. (2005). Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 29, 795–811. 10.1016/j.femsre.2004.11.005 PubMed DOI
Borneman J., Hartin R. J. (2000). PCR primers that amplify fungal rRNA genes from environmental samples. Appl. Environ. Microbiol. 66, 4356–4360. 10.1128/AEM.66.10.4356-4360.2000 PubMed DOI PMC
Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. . (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. 10.1038/nmeth.f.303 PubMed DOI PMC
Caporaso J. G., Lauber C. L., Walters W. A., Berg-Lyons D., Huntley J., Fierer N., et al. . (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624. 10.1038/ismej.2012.8 PubMed DOI PMC
Caporaso J. G., Lauber C. L., Walters W. A., Berg-Lyons D., Lozupone C. A., Turnbaugh P. J., et al. . (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U.S.A. 108, 4516–4522. 10.1073/pnas.1000080107 PubMed DOI PMC
Daims H., Brühl A., Amann R., Schleifer K. H., Wagner M. (1999). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444. 10.1016/S0723-2020(99)80053-8 PubMed DOI
DeAngelis K. M., Allgaier M., Chavarria Y., Fortney J. L., Hugenholtz P., Simmons B., et al. . (2011). Characterization of trapped lignin-degrading microbes in tropical forest soil. PLoS ONE 6:e19306. 10.1371/journal.pone.0019306 PubMed DOI PMC
DeLong E. F. (1992). Archaea in coastal marine environments. Proc. Natl. Acad. Sci. U.S.A. 89, 5685–5689. 10.1073/pnas.89.12.5685 PubMed DOI PMC
DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., et al. . (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072. 10.1128/AEM.03006-05 PubMed DOI PMC
Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. 10.1093/bioinformatics/btq461 PubMed DOI
Elberling B., Brandt K. K. (2003). Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling. Soil Biol. Biochem. 35, 263–272. 10.1016/S0038-0717(02)00258-4 DOI
Elberling B., Michelsen A., Schadel C., Schuur E. A. G., Christiansen H. H., Berg L., et al. . (2013). Long-term CO2 production following permafrost thaw. Nat. Clim. Change 3, 890–894. 10.1038/nclimate1955 DOI
Fierer N., Jackson J. A., Vilgalys R., Jackson R. B. (2005). Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71, 4117–4120. 10.1128/AEM.71.7.4117-4120.2005 PubMed DOI PMC
Frank-Fahle B. A., Yergeau É., Greer C. W., Lantuit H., Wagner D. (2014). Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic. PLoS ONE 9:e84761. 10.1371/journal.pone.0084761 PubMed DOI PMC
Freedman Z., Zak D. R. (2014). Atmospheric N deposition increases bacterial laccase-like multicopper oxidases: implications for organic matter decay. Appl. Environ. Microbiol. 80, 4460–4468. 10.1128/AEM.01224-14 PubMed DOI PMC
Ganzert L., Bajerski F., Wagner D. (2014). Bacterial community composition and diversity of five different permafrost-affected soils of North East Greenland. FEMS Microbiol. Ecol. 89, 426–441. 10.1111/1574-6941.12352 PubMed DOI
Ganzert L., Jurgens G., Münster U., Wagner D. (2007). Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol. Ecol. 59, 476–488. 10.1111/j.1574-6941.2006.00205.x PubMed DOI
Giongo A., Favet J., Lapanje A., Gano K., Kennedy S., Davis-Richardson A., et al. . (2013). Microbial hitchhikers on intercontinental dust: high-throughput sequencing to catalogue microbes in small sand samples. Aerobiologia (Bologna) 29, 71–84. 10.1007/s10453-012-9264-0 PubMed DOI
Gittel A., Bárta J., Kohoutová I., Mikutta R., Owens S., Gilbert J., et al. . (2014). Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J. 8, 841–853. 10.1038/ismej.2013.219 PubMed DOI PMC
Graef C., Hestnes A. G., Svenning M. M., Frenzel P. (2011). The active methanotrophic community in a wetland from the High Arctic. Environ. Microbiol. Rep. 3, 466–472. 10.1111/j.1758-2229.2010.00237.x PubMed DOI
Graham D. E., Wallenstein M. D., Vishnivetskaya T. A., Waldrop M. P., Phelps T. J., Pfiffner S. M., et al. . (2012). Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME J. 6, 709–712. 10.1038/ismej.2011.163 PubMed DOI PMC
Hansen A. A., Herbert R. A., Mikkelsen K., Jensen L. L., Kristoffersen T., Tiedje J. M., et al. . (2007). Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway. Environ. Microbiol. 9, 2870–2884. 10.1111/j.1462-2920.2007.01403.x PubMed DOI
Harden J. W., Koven C. D., Ping C.-L., Hugelius G., David McGuire A., Camill P., et al. . (2012). Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 39, L15704. 10.1029/2012GL051958 DOI
Høj L., Olsen R. A., Torsvik V. L. (2005). Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78°N) as characterized by 16S rRNA gene fingerprinting. FEMS Microbiol. Ecol. 53, 89–101. 10.1016/j.femsec.2005.01.004 PubMed DOI
Hollesen J., Elberling B., Jansson P. E. (2011). Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland. Glob. Chang. Biol. 17, 911–926. 10.1111/j.1365-2486.2010.02256.x DOI
Horwath Burnham J., Sletten R. S. (2010). Spatial distribution of soil organic carbon in northwest Greenland and underestimates of high Arctic carbon stores. Glob. Biogeochem. Cycles 24, GB3012. 10.1029/2009GB003660 DOI
Hugelius G., Bockheim J. G., Camill P., Elberling B., Grosse G., Harden J. W., et al. . (2013). A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth Syst. Sci. Data 5, 393–402. 10.5194/essd-5-393-2013 DOI
Husson F., Josse J., Le S., Mazet J. (2013). FactoMineR: Multivariate Exploratory Data Analysis and Data Mining with R. R Package version 1.25 2013. Available online at: http://cran.r-project.org/package=FactoMineR
IPCC. (2007). Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007: The Scientific Basis. Cambridge: Cambridge University Press
Jansson J. K., Tas N. (2014). The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425. 10.1038/nrmicro3262 PubMed DOI
Josse J., Husson F. (2013). Handling missing values in exploratory multivariate data analysis methods. J. Soc. Fr. Stat. 153, 79–99. Available online at: http://publications-sfds.fr/ojs/index.php/J-SFdS/article/view/122/112
Jurgens G., Lindström K., Saano A. (1997). Novel group within the kingdom Crenarchaeota from boreal forest soil. Appl. Environ. Microbiol. 63, 803–805. PubMed PMC
Kaiser C., Koranda M., Kitzler B., Fuchslueger L., Schnecker J., Schweiger P., et al. . (2010). Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol. 187, 843–858. 10.1111/j.1469-8137.2010.03321.x PubMed DOI PMC
Kaiser C., Meyer H., Biasi C., Rusalimova O., Barsukov P., Richter A. (2007). Conservation of soil organic matter through cryoturbation in arctic soils in Siberia. J. Geophys. Res. 112, G02017. 10.1029/2006JG000258 DOI
Kellner H., Luis P., Zimdars B., Kiesel B., Buscot F. (2008). Diversity of bacterial laccase-like multicopper oxidase genes in forest and grassland Cambisol soil samples. Soil Biol. Biochem. 40, 638–648. 10.1016/j.soilbio.2007.09.013 DOI
Leininger S., Urich T., Schloter M., Schwark L., Qi J., Nicol G. W., et al. . (2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809. 10.1038/nature04983 PubMed DOI
Liebner S., Harder J., Wagner D. (2008). Bacterial diversity and community structure in polygonal tundra soils from Samoylov Island, Lena Delta, Siberia. Int. Microbiol. 11, 195–202. 10.2436/20.1501.01.60 PubMed DOI
Liebner S., Rublack K., Stuehrmann T., Wagner D. (2009). Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. Microb. Ecol. 57, 25–35. 10.1007/s00248-008-9411-x PubMed DOI
Lipson D. A., Haggerty J. M., Srinivas A., Raab T. K., Sathe S., Dinsdale E. A. (2013). Metagenomic insights into anaerobic metabolism along an Arctic Peat soil profile. PLoS ONE 8:e64659. 10.1371/journal.pone.0064659 PubMed DOI PMC
Loy A., Lehner A., Lee N., Adamczyk J., Meier H., Ernst J., et al. . (2002). Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol. 68, 5064–5081. 10.1128/AEM.68.10.5064-5081.2002 PubMed DOI PMC
Lozupone C., Knight R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235. 10.1128/AEM.71.12.8228-8235.2005 PubMed DOI PMC
MacDougall A. H., Avis C. A., Weaver A. J. (2012). Significant contribution to climate warming from the permafrost carbon feedback. Nat. Geosci. 5, 719–721. 10.1038/ngeo1573 DOI
Mackelprang R., Waldrop M. P., DeAngelis K. M., David M. M., Chavarria K. L., Blazewicz S. J., et al. . (2011). Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371. 10.1038/nature10576 PubMed DOI
Martineau C., Pan Y., Bodrossy L., Yergeau E., Whyte L. G., Greer C. W. (2014). Atmospheric methane oxidizers are present and active in Canadian high Arctic soils. FEMS Microbiol. Ecol. 89, 257–269. 10.1111/1574-6941.12287 PubMed DOI
Marx M.-C., Wood M., Jarvis S. C. (2001). A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633–1640. 10.1016/S0038-0717(01)00079-7 DOI
Masson-Delmotte V., Swingedouw D., Landais A., Seidenkrantz M.-S., Gauthier E., Bichet V., et al. . (2012). Greenland climate change: from the past to the future. Wiley Interdiscip. Rev. Clim. Chang. 3, 427–449. 10.1002/wcc.186 DOI
Nakamura K., Kawabata T., Yura K., Go N. (2003). Novel types of two-domain multi-copper oxidases: possible missing links in the evolution. FEBS Lett. 553, 239–244. 10.1016/S0014-5793(03)01000-7 PubMed DOI
Oksanen J., Kindt R., Legendre P., O'Hara B., Stevens M. H. H., Oksanen M. J., et al. . (2007). The Vegan Package—Community Ecology Package. R package version 2.0-9. Available online at: http://CRAN.R-project.org/package=vegan
Palmtag J. (2011). Soil Organic Carbon Storage in Continous Permafrost Terrain with an Emphasis on Cryoturbation—Two Case Studies from NE Greenland and NE Siberia. Master thesis, Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm, 73
R Development Core Team. (2012). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0. Available online at: http://www.R-project.org/
Schellenberger S., Kolb S., Drake H. L. (2010). Metabolic responses of novel cellulolytic and saccharolytic agricultural soil Bacteria to oxygen. Environ. Microbiol. 12, 845–861. 10.1111/j.1462-2920.2009.02128.x PubMed DOI
Schnecker J., Wild B., Hofhansl F., Alves R. J. E., Bárta J., Capek P., et al. . (2014). Effects of soil organic matter properties and microbial community composition on enzyme activities in cryoturbated arctic soils. PLoS ONE 9:e94076. 10.1371/journal.pone.0094076 PubMed DOI PMC
Schuur E. A. G., Abbott B. (2011). Climate change: high risk of permafrost thaw. Nature 480, 32–33. 10.1038/480032a PubMed DOI
Schuur E. A. G., Bockheim J., Canadell J. G., Euskirchen E., Field C. B., Goryachkin S. V., et al. . (2008). Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58, 701–714. 10.1641/B580807 DOI
Singh B. K., Bardgett R. D., Smith P., Reay D. S. (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790. 10.1038/nrmicro2439 PubMed DOI
Sinsabaugh R. L. (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42, 391–404. 10.1016/j.soilbio.2009.10.014 PubMed DOI
Sinsabaugh R. L., Klug M. J., Collins H. P., Yeager P. E., Petersen S. O. (1999). Characterizing soil microbial communities, in Standard Soil Methods for Long-term Ecological Research, eds. Robertson G. P., Coleman D. C., Bledsoe C. S., Sollins P. (New York, NY: Oxford University Press; ), 318–348
Soil Survey Staff. (2010). Keys to Soil Taxonomy. 11th Edn. Washington, DC: USDA, U.S. Department of Agriculture-Natural Resources Conservation Service
Steven B., Pollard W. H., Greer C. W., Whyte L. G. (2008). Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ. Microbiol. 10, 3388–3403. 10.1111/j.1462-2920.2008.01746.x PubMed DOI
Talbot J. M., Allison S. D., Treseder K. K. (2008). Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct. Ecol. 22, 955–963. 10.1111/j.1365-2435.2008.01402.x DOI
Talbot J. M., Bruns T. D., Smith D. P., Branco S., Glassman S. I., Erlandson S., et al. . (2013). Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Biol. Biochem. 57, 282–291. 10.1016/j.soilbio.2012.10.004 DOI
Tarnocai C., Canadell J. G., Schuur E. A. G., Kuhry P., Mazhitova G., Zimov S. (2009). Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023. 10.1029/2008GB003327 DOI
Tas N., Prestat E., McFarland J. W., Wickland K. P., Knight R., Berhe A. A., et al. . (2014). Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J. 8, 1904–1919. 10.1038/ismej.2014.36 PubMed DOI PMC
Teske A., Sorensen K. B. (2007). Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J. 2, 3–18. 10.1038/ismej.2007.90 PubMed DOI
Tveit A., Schwacke R., Svenning M. M., Urich T. (2012). Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J. 7, 299–311. 10.1038/ismej.2012.9 PubMed DOI PMC
Tveit A., Urich T., Svenning M. M. (2014). Metatranscriptomic analysis of Arctic peat soil microbiota. Appl. Environ. Microbiol. 80, 5761–5772. 10.1128/AEM.01030-14 PubMed DOI PMC
Urich T., Lanzén A., Qi J., Huson D. H., Schleper C., Schuster S. C. (2008). Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE 3:e2527. 10.1371/journal.pone.0002527 PubMed DOI PMC
Vavrek M. J. (2011). fossil: palaeoecological and palaeogeographical analysis tools. Palaeontol. Electron. 14, 16. Available online at: http://www.uv.es/pardomv/pe/2011_1/238/238.pdf
Xu C., Liang C., Wullschleger S., Wilson C., McDowell N. (2011). Importance of feedback loops between soil inorganic nitrogen and microbial communities in the heterotrophic soil respiration response to global warming. Nat. Rev. Microbiol. 9, 222. 10.1038/nrmicro2439-c1 PubMed DOI
Yang S., Wen X., Jin H., Wu Q. (2012). Pyrosequencing investigation into the bacterial community in Permafrost Soils along the China-Russia crude oil pipeline (CRCOP). PLoS ONE 7:e52730. 10.1371/journal.pone.0052730 PubMed DOI PMC
Yergeau E., Hogues H., Whyte L. G., Greer C. W. (2010). The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J. 4, 1206–1214. 10.1038/ismej.2010.41 PubMed DOI