Fungi in Permafrost-Affected Soils of the Canadian Arctic: Horizon- and Site-Specific Keystone Taxa Revealed by Co-Occurrence Network

. 2021 Sep 13 ; 9 (9) : . [epub] 20210913

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34576837

Grantová podpora
20-21259J Grantová Agentura České Republiky

Odkazy

PubMed 34576837
PubMed Central PMC8466989
DOI 10.3390/microorganisms9091943
PII: microorganisms9091943
Knihovny.cz E-zdroje

Permafrost-affected soil stores a significant amount of organic carbon. Identifying the biological constraints of soil organic matter transformation, e.g., the interaction of major soil microbial soil organic matter decomposers, is crucial for predicting carbon vulnerability in permafrost-affected soil. Fungi are important players in the decomposition of soil organic matter and often interact in various mutualistic relationships during this process. We investigated four different soil horizon types (including specific horizons of cryoturbated soil organic matter (cryoOM)) across different types of permafrost-affected soil in the Western Canadian Arctic, determined the composition of fungal communities by sequencing (Illumina MPS) the fungal internal transcribed spacer region, assigned fungal lifestyles, and by determining the co-occurrence of fungal network properties, identified the topological role of keystone fungal taxa. Compositional analysis revealed a significantly higher relative proportion of the litter saprotroph Lachnum and root-associated saprotroph Phialocephala in the topsoil and the ectomycorrhizal close-contact exploring Russula in cryoOM, whereas Sites 1 and 2 had a significantly higher mean proportion of plant pathogens and lichenized trophic modes. Co-occurrence network analysis revealed the lowest modularity and average path length, and highest clustering coefficient in cryoOM, which suggested a lower network resistance to environmental perturbation. Zi-Pi plot analysis suggested that some keystone taxa changed their role from generalist to specialist, depending on the specific horizon concerned, Cladophialophora in topsoil, saprotrophic Mortierella in cryoOM, and Penicillium in subsoil were classified as generalists for the respective horizons but specialists elsewhere. The litter saprotrophic taxon Cadophora finlandica played a role as a generalist in Site 1 and specialist in the rest of the sites. Overall, these results suggested that fungal communities within cryoOM were more susceptible to environmental change and some taxa may shift their role, which may lead to changes in carbon storage in permafrost-affected soil.

Zobrazit více v PubMed

Payer D., Barry T., Berteaux D., Bültmann H., Cristiansen J.S., Cook J.S., Dahlberg A., Daniëls F.J.A., Ehrich D., Fjeldså J., et al. Arctic biodiversity assessment. Status and trends in Arctic biodiversity. In: Meltofte H., editor. Fungi. Narayana Press; Odder, Denmark: 2013. pp. 303–319.

Barea J.-M., Pozo M.J., Azcón R., Azcón-Aguilar C. Microbial co-operation in the rhizosphere. J. Exp. Bot. 2005;56:1761–1778. doi: 10.1093/jxb/eri197. PubMed DOI

Hestrin R., Hammer E.C., Mueller C.W., Lehmann J. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Commun. Biol. 2019;2:233. doi: 10.1038/s42003-019-0481-8. PubMed DOI PMC

de Boer W., Folman L.B., Summerbell R.C., Boddy L. Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 2005;29:795–811. doi: 10.1016/j.femsre.2004.11.005. PubMed DOI

Geml J., Timling I., Robinson C.H., Lennon N., Nusbaum H.C., Brochmann C., Noordeloos M.E., Taylor D.L. An arctic community of symbiotic fungi assembled by long-distance dispersers: Phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA. J. Biogeogr. 2012;39:74–88. doi: 10.1111/j.1365-2699.2011.02588.x. DOI

Blaud A., Phoenix G.K., Osborn A.M. Variation in bacterial, archaeal and fungal community structure and abundance in High Arctic tundra soil. Polar Biol. 2015;38:1009–1024. doi: 10.1007/s00300-015-1661-8. DOI

Wallenstein M.D., McMahon S., Schimel J. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol. Ecol. 2007;59:428–435. doi: 10.1111/j.1574-6941.2006.00260.x. PubMed DOI

Deslippe J.R., Hartmann M., Simard S.W., Mohn W.W. Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiol. Ecol. 2012;82:303–315. doi: 10.1111/j.1574-6941.2012.01350.x. PubMed DOI

Perini L., Gostinčar C., Anesio A.M., Williamson C., Tranter M., Gunde-Cimerman N. Darkening of the Greenland Ice Sheet: Fungal Abundance and Diversity Are Associated With Algal Bloom. Front. Microbiol. 2019;10:557. doi: 10.3389/fmicb.2019.00557. PubMed DOI PMC

Meyling N.V., Schmidt N.M., Eilenberg J. Occurrence and diversity of fungal entomopathogens in soils of low and high Arctic Greenland. Polar Biol. 2012;35:1439–1445. doi: 10.1007/s00300-012-1183-6. DOI

Gittel A., Bárta J., Kohoutová I., Mikutta R., Owens S., Gilbert J., Schnecker J., Wild B., Hannisdal B., Maerz J., et al. Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J. 2014;8:841–853. doi: 10.1038/ismej.2013.219. PubMed DOI PMC

Timling I., Walker D.A., Nusbaum C., Lennon N.J., Taylor D.L. Rich and cold: Diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Mol. Ecol. 2014;23:3258–3272. doi: 10.1111/mec.12743. PubMed DOI

Louca S., Jacques S.M.S., Pires A.P.F., Leal J.S., Srivastava D.S., Parfrey L.W., Farjalla V.F., Doebeli M. High taxonomic variability despite stable functional structure across microbial communities. Nat. Ecol. Evol. 2017;1:15. doi: 10.1038/s41559-016-0015. PubMed DOI

Cernansky R. Biodiversity moves beyond counting species. Nature. 2017;546:22–24. doi: 10.1038/546022a. PubMed DOI

Moore D., Robson G.D., Trinci A.P.J. 21st Century Guidebook to Fungi. Cambridge University Press; Cambridge, UK: 2011.

Alzarhani A.K., Clark D.R., Underwood G.J.C., Ford H., Cotton T.E.A., Dumbrell A.J. Are drivers of root-associated fungal community structure context specific? ISME J. 2019;13:1330–1344. doi: 10.1038/s41396-019-0350-y. PubMed DOI PMC

Veach A.M., Stokes C.E., Knoepp J., Jumpponen A., Baird R. Fungal Communities and Functional Guilds Shift Along an Elevational Gradient in the Southern Appalachian Mountains. Microb. Ecol. 2018;76:156–168. doi: 10.1007/s00248-017-1116-6. PubMed DOI

Fahey C., Koyama A., Antunes P.M., Dunfield K., Flory S.L. Plant communities mediate the interactive effects of invasion and drought on soil microbial communities. ISME J. 2020;14:1396–1409. doi: 10.1038/s41396-020-0614-6. PubMed DOI PMC

Nguyen N.H., Song Z., Bates S.T., Branco S., Tedersoo L., Menke J., Schilling J.S., Kennedy P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–248. doi: 10.1016/j.funeco.2015.06.006. DOI

Wild B., Schnecker J., Bárta J., Čapek P., Guggenberger G., Hofhansl F., Kaiser C., Lashchinsky N., Mikutta R., Mooshammer M., et al. Nitrogen dynamics in Turbic Cryosols from Siberia and Greenland. Soil Biol. Biochem. 2013;67:85–93. doi: 10.1016/j.soilbio.2013.08.004. PubMed DOI PMC

Kohler A., Kuo A., Nagy L.G., Morin E., Barry K.W., Buscot F., Canbäck B., Choi C., Cichocki N., Clum A., et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 2015;47:410–415. doi: 10.1038/ng.3223. PubMed DOI

Wutkowska M., Vader A., Mundra S., Cooper E.J., Eidesen P.B. Dead or Alive; or Does It Really Matter? Level of Congruency Between Trophic Modes in Total and Active Fungal Communities in High Arctic Soil. Front. Microbiol. 2019;9:3243. doi: 10.3389/fmicb.2018.03243. PubMed DOI PMC

Mäkipää R., Rajala T., Schigel D., Rinne K.T., Pennanen T., Abrego N., Ovaskainen O. Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs. ISME J. 2017;11:1964–1974. doi: 10.1038/ismej.2017.57. PubMed DOI PMC

Anthony M.A., Frey S.D., Stinson K.A. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere. 2017;8:e01951. doi: 10.1002/ecs2.1951. DOI

Faust K., Sathirapongsasuti J.F., Izard J., Segata N., Gevers D., Raes J., Huttenhower C. Microbial Co-occurrence Relationships in the Human Microbiome. PLoS Comput. Biol. 2012;8:e1002606. doi: 10.1371/journal.pcbi.1002606. PubMed DOI PMC

Lupatini M., Suleiman A.K.A., Jacques R.J.S., Antoniolli Z.I., de Siqueira Ferreira A., Kuramae E.E., Roesch L.F.W. Network topology reveals high connectance levels and few key microbial genera within soils. Front. Environ. Sci. 2014;2:10. doi: 10.3389/fenvs.2014.00010. DOI

Deng Y., Jiang Y.-H., Yang Y., He Z., Luo F., Zhou J. Molecular ecological network analyses. BMC Bioinform. 2012;13:113. doi: 10.1186/1471-2105-13-113. PubMed DOI PMC

Coyte K.Z., Schluter J., Foster K.R. The ecology of the microbiome: Networks, competition, and stability. Science. 2015;350:663–666. doi: 10.1126/science.aad2602. PubMed DOI

Barberán A., Bates S.T., Casamayor E.O., Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–351. doi: 10.1038/ismej.2011.119. PubMed DOI PMC

Wagg C., Schlaeppi K., Banerjee S., Kuramae E.E., van der Heijden M.G.A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 2019;10:4841. doi: 10.1038/s41467-019-12798-y. PubMed DOI PMC

Banerjee S., Thrall P.H., Bissett A., Heijden M.G.A., Richardson A.E. Linking microbial co-occurrences to soil ecological processes across a woodland-grassland ecotone. Ecol. Evol. 2018;8:8217–8230. doi: 10.1002/ece3.4346. PubMed DOI PMC

Banerjee S., Schlaeppi K., van der Heijden M.G.A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 2018;16:567–576. doi: 10.1038/s41579-018-0024-1. PubMed DOI

Layeghifard M., Hwang D.M., Guttman D.S. Disentangling Interactions in the Microbiome: A Network Perspective. Trends Microbiol. 2017;25:217–228. doi: 10.1016/j.tim.2016.11.008. PubMed DOI PMC

de Vries F.T., Wallenstein M.D. Below-ground connections underlying above-ground food production: A framework for optimising ecological connections in the rhizosphere. J. Ecol. 2017;105:913–920. doi: 10.1111/1365-2745.12783. DOI

de Vries F.T., Liiri M.E., Bjørnlund L., Bowker M.A., Christensen S., Setälä H.M., Bardgett R.D. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Chang. 2012;2:276–280. doi: 10.1038/nclimate1368. DOI

Feng J., Wang C., Lei J., Yang Y., Yan Q., Zhou X., Tao X., Ning D., Yuan M.M., Qin Y., et al. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome. 2020;8:3. doi: 10.1186/s40168-019-0778-3. PubMed DOI PMC

Newman M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA. 2006;103:8577–8582. doi: 10.1073/pnas.0601602103. PubMed DOI PMC

Benedek Z., Jordán F., Báldi A. Topological keystone species complexes in ecological interaction networks. Community Ecol. 2007;8:1–7. doi: 10.1556/ComEc.8.2007.1.1. DOI

Berry D., Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 2014;5:219. doi: 10.3389/fmicb.2014.00219. PubMed DOI PMC

Zhang T., Wang N., Yu L. Soil fungal community composition differs significantly among the Antarctic, Arctic, and Tibetan Plateau. Extremophiles. 2020;24:821–829. doi: 10.1007/s00792-020-01197-7. PubMed DOI

Zhang T., Wang N.-F., Liu H.-Y., Zhang Y.-Q., Yu L.-Y. Soil pH is a Key Determinant of Soil Fungal Community Composition in the Ny-Ålesund Region, Svalbard (High Arctic) Front. Microbiol. 2016;7:227. doi: 10.3389/fmicb.2016.00227. PubMed DOI PMC

Chen Y.-L., Deng Y., Ding J.-Z., Hu H.-W., Xu T.-L., Li F., Yang G.-B., Yang Y.-H. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Mol. Ecol. 2017;26:6608–6620. doi: 10.1111/mec.14396. PubMed DOI

Sun S., Li S., Avera B.N., Strahm B.D., Badgley B.D. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration. Appl. Environ. Microbiol. 2017;83:e00966-17. doi: 10.1128/AEM.00966-17. PubMed DOI PMC

Herren C.M., McMahon K.D. Keystone taxa predict compositional change in microbial communities. Environ. Microbiol. 2018;20:2207–2217. doi: 10.1111/1462-2920.14257. PubMed DOI

Martín González A.M., Dalsgaard B., Olesen J.M. Centrality measures and the importance of generalist species in pollination networks. Ecol. Complex. 2010;7:36–43. doi: 10.1016/j.ecocom.2009.03.008. DOI

Qi G., Ma G., Chen S., Lin C., Zhao X. Microbial Network and Soil Properties Are Changed in Bacterial Wilt-Susceptible Soil. Appl. Environ. Microbiol. 2019;85 doi: 10.1128/AEM.00162-19. PubMed DOI PMC

Burn C.R. Herschel Island Qikiqtaryuk: A Natural and Cultural History of Yukon’s Arctic Island. University of Calgary Press; Whitehorse, YT, Canada: 2012. pp. 48–53.

Siewert M.B., Lantuit H., Richter A., Hugelius G. Permafrost Causes Unique Fine-Scale Spatial Variability Across Tundra Soils. Glob. Biogeochem. Cycles. 2021;35 doi: 10.1029/2020GB006659. DOI

Schoeneberger P.J., Wysocki D.A., Benham E.C., editors. Field Book for Describing and Sampling Soils. National Soil Survey Center, Natural Resources Conservation Service; Lincoln, NE, USA: 2012. DOI

Ping C.-L., Clark M.H., Kimble J.M., Michaelson G.J., Shur Y., Stiles C.A. Sampling Protocols for Permafrost-Affected Soils. Soil Horiz. 2013;54:13. doi: 10.2136/sh12-09-0027. DOI

Siewert M.B., Hugelius G., Heim B., Faucherre S. Landscape controls and vertical variability of soil organic carbon storage in permafrost-affected soils of the Lena River Delta. Catena. 2016;147:725–741. doi: 10.1016/j.catena.2016.07.048. DOI

Varsadiya M., Urich T., Hugelius G., Bárta J. Microbiome structure and functional potential in permafrost soils of the Western Canadian Arctic. FEMS Microbiol. Ecol. 2021;97:fiab008. doi: 10.1093/femsec/fiab008. PubMed DOI

Bárta J., Šlajsová P., Tahovská K., Picek T., Šantrůčková H. Different temperature sensitivity and kinetics of soil enzymes indicate seasonal shifts in C, N and P nutrient stoichiometry in acid forest soil. Biogeochemistry. 2014;117:525–537. doi: 10.1007/s10533-013-9898-1. DOI

Marx M.-C., Wood M., Jarvis S. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 2001;33:1633–1640. doi: 10.1016/S0038-0717(01)00079-7. DOI

Borneman J., Hartin R.J. PCR primers that amplify fungal rRNA genes from environmental samples. Appl. Environ. Microbiol. 2000;66:4356–4360. doi: 10.1128/AEM.66.10.4356-4360.2000. PubMed DOI PMC

White T.J., Bruns T., Lee S., Taylor J. PCR Protocols. Elsevier; Amsterdam, The Netherlands: 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics; pp. 315–322.

Bengtsson-Palme J., Ryberg M., Hartmann M., Branco S., Wang Z., Godhe A., De Wit P., Sánchez-García M., Ebersberger I., de Sousa F., et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 2013;4:914–919. doi: 10.1111/2041-210X.12073. DOI

Edgar R.C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv. 2016 doi: 10.1101/081257. DOI

Edgar R.C., Flyvbjerg H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics. 2015;31:3476–3482. doi: 10.1093/bioinformatics/btv401. PubMed DOI

Kõljalg U., Nilsson R.H., Abarenkov K., Tedersoo L., Taylor A.F.S., Bahram M., Bates S.T., Bruns T.D., Bengtsson-Palme J., Callaghan T.M., et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013;22:5271–5277. doi: 10.1111/mec.12481. PubMed DOI

Lahti L., Shetty S. Tools for Microbiome Analysis in R 2017. [(accessed on 19 July 2021)]. Available online: http://microbiome.github.com/microbiome.

R Development Core Team . R: A Language and Environment for Statistical Computing. R Development Core Team; Vienna, Austria: 2011.

Põlme S., Abarenkov K., Henrik Nilsson R., Lindahl B.D., Clemmensen K.E., Kauserud H., Nguyen N., Kjøller R., Bates S.T., Baldrian P., et al. FungalTraits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 2020;105:1–16. doi: 10.1007/s13225-020-00466-2. DOI

Harrell F.E.J. R package. Hmisc: Harrell Miscellaneous; Nashville, TN, USA: 2020. version 4.0-1.

Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Csardi G., Nepusz T. The igraph software package for complex network research. InterJ. Complex Syst. 2006;1695:1–9.

Zhou J., Deng Y., Luo F., He Z., Yang Y. Phylogenetic Molecular Ecological Network of Soil Microbial Communities in Response to Elevated CO2. MBio. 2011;2:e00122-11. doi: 10.1128/mBio.00122-11. PubMed DOI PMC

Lu L., Yin S., Liu X., Zhang W., Gu T., Shen Q., Qiu H. Fungal networks in yield-invigorating and -debilitating soils induced by prolonged potato monoculture. Soil Biol. Biochem. 2013;65:186–194. doi: 10.1016/j.soilbio.2013.05.025. DOI

Langfelder P., Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 2007;1:54. doi: 10.1186/1752-0509-1-54. PubMed DOI PMC

Olesen J.M., Bascompte J., Dupont Y.L., Jordano P. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA. 2007;104:19891–19896. doi: 10.1073/pnas.0706375104. PubMed DOI PMC

Faust K., Raes J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012;10:538–550. doi: 10.1038/nrmicro2832. PubMed DOI

Oksanen J., Kindt R., Legendre P., O’hara B., Henry M., Maintainer H.S. The Vegan Package Title Community Ecology Package. 2007. [(accessed on 19 July 2021)]. Available online: http://Cran.R-Project.Org/; http://R-Forge.R-Project.Org/Projects/Vegan/

Parks D.H., Beiko R.G. Identifying biologically relevant differences between metagenomic communities. Bioinformatics. 2010;26:715–721. doi: 10.1093/bioinformatics/btq041. PubMed DOI

Guimerà R., Nunes Amaral L.A. Functional cartography of complex metabolic networks. Nature. 2005;433:895–900. doi: 10.1038/nature03288. PubMed DOI PMC

Hoppe B., Purahong W., Wubet T., Kahl T., Bauhus J., Arnstadt T., Hofrichter M., Buscot F., Krüger D. Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Divers. 2016;77:367–379. doi: 10.1007/s13225-015-0341-x. DOI

Bani A., Pioli S., Ventura M., Panzacchi P., Borruso L., Tognetti R., Tonon G., Brusetti L. The role of microbial community in the decomposition of leaf litter and deadwood. Appl. Soil Ecol. 2018;126:75–84. doi: 10.1016/j.apsoil.2018.02.017. DOI

Dickie I.A. Host preference, niches and fungal diversity. New Phytol. 2007;174:230–233. doi: 10.1111/j.1469-8137.2007.02055.x. PubMed DOI

Bascompte J. Networks in ecology. Basic Appl. Ecol. 2007;8:485–490. doi: 10.1016/j.baae.2007.06.003. DOI

Robinson C.H., Saunders P.W., Madan N.J., Janie Pryce-Miller E., Pentecost A. Does nitrogen deposition affect soil microfungal diversity and soil N and P dynamics in a high Arctic ecosystem? Glob. Chang. Biol. 2004;10:1065–1079. doi: 10.1111/j.1529-8817.2003.00793.x. DOI

Lennon J.T., Aanderud Z.T., Lehmkuhl B.K., Schoolmaster D.R. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology. 2012;93:1867–1879. doi: 10.1890/11-1745.1. PubMed DOI

Mundra S., Halvorsen R., Kauserud H., Müller E., Vik U., Eidesen P.B. Arctic fungal communities associated with roots of Bistorta vivipara do not respond to the same fine-scale edaphic gradients as the aboveground vegetation. New Phytol. 2015;205:1587–1597. doi: 10.1111/nph.13216. PubMed DOI

Clemmensen K.E., Michelsen A., Jonasson S., Shaver G.R. Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems. New Phytol. 2006;171:391–404. doi: 10.1111/j.1469-8137.2006.01778.x. PubMed DOI

Zhang T., Yao Y.-F. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific. PLoS ONE. 2015;10:e0130051. doi: 10.1371/journal.pone.0130051. PubMed DOI PMC

Newsham K.K., Upson R., Read D.J. Mycorrhizas and dark septate root endophytes in polar regions. Fungal Ecol. 2009;2:10–20. doi: 10.1016/j.funeco.2008.10.005. PubMed DOI

Walker X.J., Basinger J.F., Kaminskyj S.G.W. Endorhizal Fungi in Ranunculus from Western and Arctic Canada: Predominance of Fine Endophytes at High Latitudes. Open Mycol. J. 2010;4:1–9. doi: 10.2174/1874437001004010001. DOI

Müller M.M., Valjakka R., Suokko A., Hantula J. Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol. Ecol. 2001;10:1801–1810. doi: 10.1046/j.1365-294X.2001.01304.x. PubMed DOI

Korkama-Rajala T., Müller M.M., Pennanen T. Decomposition and Fungi of Needle Litter from Slow- and Fast-growing Norway Spruce (Picea abies) Clones. Microb. Ecol. 2008;56:76–89. doi: 10.1007/s00248-007-9326-y. PubMed DOI

Promputtha I., Hyde K.D., McKenzie E.H.C., Peberdy J.F., Lumyong S. Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers. 2010;41:89–99. doi: 10.1007/s13225-010-0024-6. DOI

Caldwell B.A., Jumpponen A., Trappe J.M. Utilization of Major Detrital Substrates by Dark-Septate, Root Endophytes. Mycologia. 2000;92:230. doi: 10.2307/3761555. DOI

Upson R., Read D.J., Newsham K.K. Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza. 2009;20:1–11. doi: 10.1007/s00572-009-0260-3. PubMed DOI

Surono, Narisawa K. The dark septate endophytic fungus Phialocephala fortinii is a potential decomposer of soil organic compounds and a promoter of Asparagus officinalis growth. Fungal Ecol. 2017;28:1–10. doi: 10.1016/j.funeco.2017.04.001. DOI

Verbruggen E., Pena R., Fernandez C.W., Soong J.L. Mycorrhizal Mediation of Soil. Elsevier; Amsterdam, The Netherlands: 2017. Mycorrhizal Interactions With Saprotrophs and Impact on Soil Carbon Storage; pp. 441–460.

Bödeker I.T.M., Lindahl B.D., Olson Å., Clemmensen K.E. Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently. Funct. Ecol. 2016;30:1967–1978. doi: 10.1111/1365-2435.12677. DOI

Talbot J.M., Allison S.D., Treseder K.K. Decomposers in disguise: Mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct. Ecol. 2008;22:955–963. doi: 10.1111/j.1365-2435.2008.01402.x. DOI

Rineau F., Shah F., Smits M.M., Persson P., Johansson T., Carleer R., Troein C., Tunlid A. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. ISME J. 2013;7:2010–2022. doi: 10.1038/ismej.2013.91. PubMed DOI PMC

Colpaert J.V., Tichelen K.K. Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized by ectomycorrhizal or litter-decomposing basidiomycetes. New Phytol. 1996;134:123–132. doi: 10.1111/j.1469-8137.1996.tb01152.x. DOI

Gadgil R.L., Gadgil P.D. Mycorrhiza and Litter Decomposition. Nature. 1971;233:133. doi: 10.1038/233133a0. PubMed DOI

Fontaine S., Barot S., Barré P., Bdioui N., Mary B., Rumpel C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature. 2007;450:277–280. doi: 10.1038/nature06275. PubMed DOI

Wild B., Schnecker J., Alves R.J.E., Barsukov P., Bárta J., Čapek P., Gentsch N., Gittel A., Guggenberger G., Lashchinskiy N., et al. Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biol. Biochem. 2014;75:143–151. doi: 10.1016/j.soilbio.2014.04.014. PubMed DOI PMC

Lindahl B.D., Ihrmark K., Boberg J., Trumbore S.E., Högberg P., Stenlid J., Finlay R.D. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 2007;173:611–620. doi: 10.1111/j.1469-8137.2006.01936.x. PubMed DOI

Orwin K.H., Kirschbaum M.U.F., St John M.G., Dickie I.A. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: A model-based assessment. Ecol. Lett. 2011;14:493–502. doi: 10.1111/j.1461-0248.2011.01611.x. PubMed DOI

Averill C., Hawkes C.V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 2016;19:937–947. doi: 10.1111/ele.12631. PubMed DOI

Kaiser C., Meyer H., Biasi C., Rusalimova O., Barsukov P., Richter A. Conservation of soil organic matter through cryoturbation in arctic soils in Siberia. J. Geophys. Res. Biogeosci. 2007;112:1–8. doi: 10.1029/2006JG000258. DOI

Wild B., Schnecker J., Knoltsch A., Takriti M., Mooshammer M., Gentsch N., Mikutta R., Alves R.J.E., Gittel A., Lashchinskiy N., et al. Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia. Glob. Biogeochem. Cycles. 2015;29:567–582. doi: 10.1002/2015GB005084. PubMed DOI PMC

Talbot J.M., Martin F., Kohler A., Henrissat B., Peay K.G. Functional guild classification predicts the enzymatic role of fungi in litter and soil biogeochemistry. Soil Biol. Biochem. 2015;88:441–456. doi: 10.1016/j.soilbio.2015.05.006. DOI

Shi S., Nuccio E.E., Shi Z.J., He Z., Zhou J., Firestone M.K. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecol. Lett. 2016;19:926–936. doi: 10.1111/ele.12630. PubMed DOI

Upton R.N., Checinska Sielaff A., Hofmockel K.S., Xu X., Polley H.W., Wilsey B.J. Soil depth and grassland origin cooperatively shape microbial community co-occurrence and function. Ecosphere. 2020;11:e02973. doi: 10.1002/ecs2.2973. DOI

Toju H., Kishida O., Katayama N., Takagi K. Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons. PLoS ONE. 2016;11:e0165987. doi: 10.1371/journal.pone.0165987. PubMed DOI PMC

Watts D.J., Strogatz S.H. Collective dynamics of ‘small-world’ networks. Nature. 1998;393:440–442. doi: 10.1038/30918. PubMed DOI

Albert R., Barabási A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002;74:47–97. doi: 10.1103/RevModPhys.74.47. DOI

Zhou J., Deng Y., Luo F., He Z., Tu Q., Zhi X. Functional Molecular Ecological Networks. MBio. 2010;1:e00169-10. doi: 10.1128/mBio.00169-10. PubMed DOI PMC

Dupont Y.L., Olesen J.M. Ecological modules and roles of species in heathland plant-insect flower visitor networks. J. Anim. Ecol. 2009;78:346–353. doi: 10.1111/j.1365-2656.2008.01501.x. PubMed DOI

Banerjee S., Kirkby C.A., Schmutter D., Bissett A., Kirkegaard J.A., Richardson A.E. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 2016;97:188–198. doi: 10.1016/j.soilbio.2016.03.017. DOI

Wu L., Yang Y., Chen S., Zhao M., Zhu Z., Yang S., Qu Y., Ma Q., He Z., Zhou J., et al. Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Res. 2016;104:1–10. doi: 10.1016/j.watres.2016.07.072. PubMed DOI

Zhang B., Zhang J., Liu Y., Shi P., Wei G. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biol. Biochem. 2018;118:178–186. doi: 10.1016/j.soilbio.2017.12.011. DOI

Tao J., Meng D., Qin C., Liu X., Liang Y., Xiao Y., Liu Z., Gu Y., Li J., Yin H. Integrated network analysis reveals the importance of microbial interactions for maize growth. Appl. Microbiol. Biotechnol. 2018;102:3805–3818. doi: 10.1007/s00253-018-8837-4. PubMed DOI

Schnecker J., Wild B., Hofhansl F., Eloy Alves R.J., Bárta J., Čapek P., Fuchslueger L., Gentsch N., Gittel A., Guggenberger G., et al. Effects of Soil Organic Matter Properties and Microbial Community Composition on Enzyme Activities in Cryoturbated Arctic Soils. PLoS ONE. 2014;9:e94076. doi: 10.1371/journal.pone.0094076. PubMed DOI PMC

Jurgens J.A., Blanchette R.A., Filley T.R. Fungal diversity and deterioration in mummified woods from the ad Astra Ice Cap region in the Canadian High Arctic. Polar Biol. 2009;32:751–758. doi: 10.1007/s00300-008-0578-x. DOI

Obase K., Douhan G.W., Matsuda Y., Smith M.E. Culturable fungal assemblages growing within Cenococcum sclerotia in forest soils. FEMS Microbiol. Ecol. 2014;90:708–717. doi: 10.1111/1574-6941.12428. PubMed DOI

James T.Y., Kauff F., Schoch C.L., Matheny P.B., Hofstetter V., Cox C.J., Celio G., Gueidan C., Fraker E., Miadlikowska J., et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature. 2006;443:818–822. doi: 10.1038/nature05110. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...