Oxidative Stress in the Developing Rat Brain due to Production of Reactive Oxygen and Nitrogen Species
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27190574
PubMed Central
PMC4846767
DOI
10.1155/2016/5057610
Knihovny.cz E-zdroje
- MeSH
- fluorescenční mikroskopie MeSH
- glykosylace MeSH
- kyselina peroxydusitá metabolismus MeSH
- lysin analogy a deriváty metabolismus MeSH
- mozek růst a vývoj metabolismus MeSH
- novorozená zvířata MeSH
- oxidační stres * MeSH
- peroxid vodíku metabolismus MeSH
- peroxidace lipidů MeSH
- posttranslační úpravy proteinů MeSH
- potkani Wistar MeSH
- reaktivní formy dusíku metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- superoxidy metabolismus MeSH
- tyrosin analogy a deriváty metabolismus MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 3-nitrotyrosine MeSH Prohlížeč
- kyselina peroxydusitá MeSH
- lysin MeSH
- N(6)-carboxyethyllysine MeSH Prohlížeč
- peroxid vodíku MeSH
- reaktivní formy dusíku MeSH
- reaktivní formy kyslíku MeSH
- superoxidy MeSH
- tyrosin MeSH
Oxidative stress after birth led us to localize reactive oxygen and nitrogen species (RONS) production in the developing rat brain. Brains were assessed a day prenatally and on postnatal days 1, 2, 4, 8, 14, 30, and 60. Oxidation of dihydroethidium detected superoxide; 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate revealed hydrogen peroxide; immunohistochemical proof of nitrotyrosine and carboxyethyllysine detected peroxynitrite formation and lipid peroxidation, respectively. Blue autofluorescence detected protein oxidation. The foetuses showed moderate RONS production, which changed cyclically during further development. The periods and sites of peak production of individual RONS differed, suggesting independent generation. On day 1, neuronal/glial RONS production decreased indicating that increased oxygen concentration after birth did not cause oxidative stress. Dramatic changes in the amount and the sites of RONS production occurred on day 4. Nitrotyrosine detection reached its maximum. Day 14 represented other vast alterations in RONS generation. Superoxide production in arachnoidal membrane reached its peak. From this day on, the internal elastic laminae of blood vessels revealed the blue autofluorescence. The adult animals produced moderate levels of superoxide; all other markers reached their minimum. There was a strong correlation between detection of nitrotyrosine and carboxyethyllysine probably caused by lipid peroxidation initiated with RONS.
Zobrazit více v PubMed
Irani K., Xia Y., Zweier J. L., et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science. 1997;275(5306):1649–1652. doi: 10.1126/science.275.5306.1649. PubMed DOI
Lander H. M. An essential role for free radicals and derived species in signal transduction. The FASEB Journal. 1997;11(2):118–124. PubMed
Harman D. The free radical theory of aging. Antioxidants and Redox Signaling. 2003;5(5):557–561. doi: 10.1089/152308603770310202. PubMed DOI
Kann O., Kovács R. Mitochondria and neuronal activity. American Journal of Physiology—Cell Physiology. 2007;292(2):C641–C657. doi: 10.1152/ajpcell.00222.2006. PubMed DOI
Navarro A., Boveris A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. American Journal of Physiology—Regulatory Integrative and Comparative Physiology. 2004;287(5):R1244–R1249. doi: 10.1152/ajpregu.00226.2004. PubMed DOI
Keilhoff G., Seidel B., Noack H., Tischmeyer W., Stanek D., Wolf G. Patterns of nitric oxide synthase at the messenger RNA and protein levels during early rat brain development. Neuroscience. 1996;75(4):1193–1201. doi: 10.1016/0306-4522(96)00330-2. PubMed DOI
Fernández A. P., Alonso D., Lisazoaín I., et al. Postnatal changes in the nitric oxide system of the rat cerebral cortex after hypoxia during delivery. Developmental Brain Research. 2003;142(2):177–192. doi: 10.1016/S0165-3806(03)00068-3. PubMed DOI
Uttenthal L. O., Alonso D., Fernández A. P., et al. Neuronal and inducible nitric oxide synthase and nitrotyrosine immunoreactivities in the cerebral cortex of the aging rat. Microscopy Research and Technique. 1998;43(1):75–88. doi: 10.1002/(SICI)1097-0029(19981001)43:1<75::AID-JEMT11>3.0.CO;2-0. PubMed DOI
Kuan C.-Y., Roth K. A., Flavell R. A., Rakic P. Mechanisms of programmed cell death in the developing brain. Trends in Neurosciences. 2000;23(7):291–297. doi: 10.1016/S0166-2236(00)01581-2. PubMed DOI
Bandeira F., Lent R., Herculano-Houzel S. Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(33):14108–14113. doi: 10.1073/pnas.0804650106. PubMed DOI PMC
Marín-Teva J. L., Dusart I., Colin C., Gervais A., Van Rooijen N., Mallat M. Microglia promote the death of developing Purkinje cells. Neuron. 2004;41(4):535–547. doi: 10.1016/s0896-6273(04)00069-8. PubMed DOI
Korkmaz A., Oter S., Seyrek M., Topal T. Molecular, genetic and epigenetic pathways of peroxynitrite-induced cellular toxicity. Interdisciplinary Toxicology. 2009;2(4):219–228. doi: 10.2478/v10102-009-0020-4. PubMed DOI PMC
Singh I. N., Sullivan P. G., Hall E. D. Peroxynitrite-mediated oxidative damage to brain mitochondria: protective effects of peroxynitrite scavengers. Journal of Neuroscience Research. 2007;85(10):2216–2223. doi: 10.1002/jnr.21360. PubMed DOI
Nagai R., Unno Y., Hayashi M. C., et al. Peroxynitrite induces formation of N ε-(carboxymethyl)lysine by the cleavage of Amadori product and generation of glucosone and glyoxal from glucose: novel pathways for protein modification by peroxynitrite. Diabetes. 2002;51(9):2833–2839. doi: 10.2337/diabetes.51.9.2833. PubMed DOI
Thorpe S. R., Baynes J. W. Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids. 2003;25(3-4):275–281. doi: 10.1007/s00726-003-0017-9. PubMed DOI
Randerath E., Zhou G. D., Randerath K. Organ-specific oxidative DNA damage associated with normal birth in rats. Carcinogenesis. 1997;18(4):859–866. doi: 10.1093/carcin/18.4.859. PubMed DOI
Pallardo F. V., Sastre J., Asensi M., Rodrigo F., Estrela J. M., Vina J. Physiological changes in glutathione metabolism in foetal and newborn rat liver. Biochemical Journal. 1991;274(3):891–893. doi: 10.1042/bj2740891. PubMed DOI PMC
Sastre J., Asensi M., Rodrigo F., Pallardó F. V., Vento M., Viña J. Antioxidant administration to the mother prevents oxidative stress associated with birth in the neonatal rat. Life Sciences. 1994;54(26):2055–2059. doi: 10.1016/0024-3205(94)00714-4. PubMed DOI
Gunther T., Hollriegl V., Vormann J. Perinatal development of iron and antioxidant defence systems. Journal of Trace Elements and Electrolytes in Health and Disease. 1993;7(1):47–52. PubMed
Mishra O. P., Delivoria-Papadopoulos M. Lipid peroxidation in developing fetal guinea pig brain during normoxia and hypoxia. Developmental Brain Research. 1989;45(1):129–135. doi: 10.1016/0165-3806(89)90014-X. PubMed DOI
Cao Q., Ong W. Y., Halliwell B. Lipid peroxidation in the postnatal rat brain. Formation of 4-hydroxynonenal in the supraventricular corpus callosum of postnatal rats. Experimental Brain Research. 2001;137(2):205–213. doi: 10.1007/s002210000625. PubMed DOI
Haynes R. L., Folkerth R. D., Szweda L. I., Volpe J. J., Kinney H. C. Lipid peroxidation during human cerebral myelination. Journal of Neuropathology and Experimental Neurology. 2006;65(9):894–904. doi: 10.1097/01.jnen.0000235858.56631.97. PubMed DOI
Puente B. N., Kimura W., Muralidhar S. A., et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157(3):565–579. doi: 10.1016/j.cell.2014.03.032. PubMed DOI PMC
Wilhelm J., Ivica J., Kagan D., Svoboda P. Early postnatal development of rat brain is accompanied by generation of lipofuscin-like pigments. Molecular and Cellular Biochemistry. 2011;347(1-2):157–162. doi: 10.1007/s11010-010-0623-2. PubMed DOI
Wilhelm J., Vytášek R., Ošťádalová I., Vajner L. Evaluation of different methods detecting intracellular generation of free radicals. Molecular and Cellular Biochemistry. 2009;328(1-2):167–176. doi: 10.1007/s11010-009-0086-5. PubMed DOI
Wilhelm J., Ošt’ádalová I., Vytášek R., Vajner L. Generation of hydrogen peroxide in the developing rat heart: the role of elastin metabolism. Molecular and Cellular Biochemistry. 2011;358(1-2):215–220. doi: 10.1007/s11010-011-0937-8. PubMed DOI
Herget J., Wilhelm J., Novotná J., et al. A possible role of the oxidant tissue injury in the development of hypoxic pulmonary hypertension. Physiological Research. 2000;49(5):493–501. PubMed
Zámecník J., Vytásek R., Vencovský J., Vilím V. Immunolocalization of protein-bound 3-nitrotyrosine in inflammatory myopathies. Ceskoslovenská Patologie. 2011;47(2):62–65. PubMed
Vytášek R., Šedová L., Vilím V. Increased concentration of two different advanced glycation end-products detected by enzyme immunoassays with new monoclonal antibodies in sera of patients with rheumatoid arthritis. BMC Musculoskeletal Disorders. 2010;11, article 83 doi: 10.1186/1471-2474-11-83. PubMed DOI PMC
Benov L., Sztejnberg L., Fridovich I. Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radical Biology and Medicine. 1998;25(7):826–831. doi: 10.1016/S0891-5849(98)00163-4. PubMed DOI
Budd S. L., Castilho R. F., Nicholls D. G. Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells. FEBS Letters. 1997;415(1):21–24. doi: 10.1016/S0014-5793(97)01088-0. PubMed DOI
Zhao H., Joseph J., Fales H. M., et al. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(16):5727–5732. doi: 10.1073/pnas.0501719102. PubMed DOI PMC
Keston A. S., Brandt R. The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Analytical Biochemistry. 1965;11(1):1–5. doi: 10.1016/0003-2697(65)90034-5. PubMed DOI
Royall J. A., Ischiropoulos H. Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Archives of Biochemistry and Biophysics. 1993;302(2):348–355. doi: 10.1006/abbi.1993.1222. PubMed DOI
LeBel C. P., Ischiropoulos H., Bondy S. C. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chemical Research in Toxicology. 1992;5(2):227–231. doi: 10.1021/tx00026a012. PubMed DOI
Cathcart R., Schwiers E., Ames B. N. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Analytical Biochemistry. 1983;134(1):111–116. doi: 10.1016/0003-2697(83)90270-1. PubMed DOI
Kooy N. W., Royall J. A., Ischiropoulos H. Oxidation of 2′,7′-dichlorofluorescin by peroxynitrite. Free Radical Research. 1997;27(3):245–254. doi: 10.3109/10715769709065763. PubMed DOI
Fukuzawa K., Kishikawa K., Tokumura A., Tsukatani H., Shibuya M. Fluorescent pigments by covalent binding of lipid peroxidation by-products to protein and amino acids. Lipids. 1985;20(12):854–861. doi: 10.1007/BF02534768. PubMed DOI
Goto S., Nakamura A. Age-associated, oxidatively modified proteins: a critical evaluation. Age. 1997;20(2):81–89. doi: 10.1007/s11357-997-0008-y. PubMed DOI PMC
Bačáková L., Wilhelm J., Herget J., Novotná J., Eckhart A. Oxidized collagen stimulates proliferation of vascular smooth muscle cells. Experimental and Molecular Pathology. 1997;64(3):185–194. doi: 10.1006/exmp.1997.2219. PubMed DOI
González J. M., Briones A. M., Starcher B., et al. Influence of elastin on rat small artery mechanical properties. Experimental Physiology. 2005;90(4):463–468. doi: 10.1113/expphysiol.2005.030056. PubMed DOI
Crow J. P. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide—Biology and Chemistry. 1997;1(2):145–157. doi: 10.1006/niox.1996.0113. PubMed DOI