Oxidative Stress in the Developing Rat Brain due to Production of Reactive Oxygen and Nitrogen Species

. 2016 ; 2016 () : 5057610. [epub] 20160413

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27190574

Oxidative stress after birth led us to localize reactive oxygen and nitrogen species (RONS) production in the developing rat brain. Brains were assessed a day prenatally and on postnatal days 1, 2, 4, 8, 14, 30, and 60. Oxidation of dihydroethidium detected superoxide; 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate revealed hydrogen peroxide; immunohistochemical proof of nitrotyrosine and carboxyethyllysine detected peroxynitrite formation and lipid peroxidation, respectively. Blue autofluorescence detected protein oxidation. The foetuses showed moderate RONS production, which changed cyclically during further development. The periods and sites of peak production of individual RONS differed, suggesting independent generation. On day 1, neuronal/glial RONS production decreased indicating that increased oxygen concentration after birth did not cause oxidative stress. Dramatic changes in the amount and the sites of RONS production occurred on day 4. Nitrotyrosine detection reached its maximum. Day 14 represented other vast alterations in RONS generation. Superoxide production in arachnoidal membrane reached its peak. From this day on, the internal elastic laminae of blood vessels revealed the blue autofluorescence. The adult animals produced moderate levels of superoxide; all other markers reached their minimum. There was a strong correlation between detection of nitrotyrosine and carboxyethyllysine probably caused by lipid peroxidation initiated with RONS.

Zobrazit více v PubMed

Irani K., Xia Y., Zweier J. L., et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science. 1997;275(5306):1649–1652. doi: 10.1126/science.275.5306.1649. PubMed DOI

Lander H. M. An essential role for free radicals and derived species in signal transduction. The FASEB Journal. 1997;11(2):118–124. PubMed

Harman D. The free radical theory of aging. Antioxidants and Redox Signaling. 2003;5(5):557–561. doi: 10.1089/152308603770310202. PubMed DOI

Kann O., Kovács R. Mitochondria and neuronal activity. American Journal of Physiology—Cell Physiology. 2007;292(2):C641–C657. doi: 10.1152/ajpcell.00222.2006. PubMed DOI

Navarro A., Boveris A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. American Journal of Physiology—Regulatory Integrative and Comparative Physiology. 2004;287(5):R1244–R1249. doi: 10.1152/ajpregu.00226.2004. PubMed DOI

Keilhoff G., Seidel B., Noack H., Tischmeyer W., Stanek D., Wolf G. Patterns of nitric oxide synthase at the messenger RNA and protein levels during early rat brain development. Neuroscience. 1996;75(4):1193–1201. doi: 10.1016/0306-4522(96)00330-2. PubMed DOI

Fernández A. P., Alonso D., Lisazoaín I., et al. Postnatal changes in the nitric oxide system of the rat cerebral cortex after hypoxia during delivery. Developmental Brain Research. 2003;142(2):177–192. doi: 10.1016/S0165-3806(03)00068-3. PubMed DOI

Uttenthal L. O., Alonso D., Fernández A. P., et al. Neuronal and inducible nitric oxide synthase and nitrotyrosine immunoreactivities in the cerebral cortex of the aging rat. Microscopy Research and Technique. 1998;43(1):75–88. doi: 10.1002/(SICI)1097-0029(19981001)43:1<75::AID-JEMT11>3.0.CO;2-0. PubMed DOI

Kuan C.-Y., Roth K. A., Flavell R. A., Rakic P. Mechanisms of programmed cell death in the developing brain. Trends in Neurosciences. 2000;23(7):291–297. doi: 10.1016/S0166-2236(00)01581-2. PubMed DOI

Bandeira F., Lent R., Herculano-Houzel S. Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(33):14108–14113. doi: 10.1073/pnas.0804650106. PubMed DOI PMC

Marín-Teva J. L., Dusart I., Colin C., Gervais A., Van Rooijen N., Mallat M. Microglia promote the death of developing Purkinje cells. Neuron. 2004;41(4):535–547. doi: 10.1016/s0896-6273(04)00069-8. PubMed DOI

Korkmaz A., Oter S., Seyrek M., Topal T. Molecular, genetic and epigenetic pathways of peroxynitrite-induced cellular toxicity. Interdisciplinary Toxicology. 2009;2(4):219–228. doi: 10.2478/v10102-009-0020-4. PubMed DOI PMC

Singh I. N., Sullivan P. G., Hall E. D. Peroxynitrite-mediated oxidative damage to brain mitochondria: protective effects of peroxynitrite scavengers. Journal of Neuroscience Research. 2007;85(10):2216–2223. doi: 10.1002/jnr.21360. PubMed DOI

Nagai R., Unno Y., Hayashi M. C., et al. Peroxynitrite induces formation of N ε-(carboxymethyl)lysine by the cleavage of Amadori product and generation of glucosone and glyoxal from glucose: novel pathways for protein modification by peroxynitrite. Diabetes. 2002;51(9):2833–2839. doi: 10.2337/diabetes.51.9.2833. PubMed DOI

Thorpe S. R., Baynes J. W. Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids. 2003;25(3-4):275–281. doi: 10.1007/s00726-003-0017-9. PubMed DOI

Randerath E., Zhou G. D., Randerath K. Organ-specific oxidative DNA damage associated with normal birth in rats. Carcinogenesis. 1997;18(4):859–866. doi: 10.1093/carcin/18.4.859. PubMed DOI

Pallardo F. V., Sastre J., Asensi M., Rodrigo F., Estrela J. M., Vina J. Physiological changes in glutathione metabolism in foetal and newborn rat liver. Biochemical Journal. 1991;274(3):891–893. doi: 10.1042/bj2740891. PubMed DOI PMC

Sastre J., Asensi M., Rodrigo F., Pallardó F. V., Vento M., Viña J. Antioxidant administration to the mother prevents oxidative stress associated with birth in the neonatal rat. Life Sciences. 1994;54(26):2055–2059. doi: 10.1016/0024-3205(94)00714-4. PubMed DOI

Gunther T., Hollriegl V., Vormann J. Perinatal development of iron and antioxidant defence systems. Journal of Trace Elements and Electrolytes in Health and Disease. 1993;7(1):47–52. PubMed

Mishra O. P., Delivoria-Papadopoulos M. Lipid peroxidation in developing fetal guinea pig brain during normoxia and hypoxia. Developmental Brain Research. 1989;45(1):129–135. doi: 10.1016/0165-3806(89)90014-X. PubMed DOI

Cao Q., Ong W. Y., Halliwell B. Lipid peroxidation in the postnatal rat brain. Formation of 4-hydroxynonenal in the supraventricular corpus callosum of postnatal rats. Experimental Brain Research. 2001;137(2):205–213. doi: 10.1007/s002210000625. PubMed DOI

Haynes R. L., Folkerth R. D., Szweda L. I., Volpe J. J., Kinney H. C. Lipid peroxidation during human cerebral myelination. Journal of Neuropathology and Experimental Neurology. 2006;65(9):894–904. doi: 10.1097/01.jnen.0000235858.56631.97. PubMed DOI

Puente B. N., Kimura W., Muralidhar S. A., et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157(3):565–579. doi: 10.1016/j.cell.2014.03.032. PubMed DOI PMC

Wilhelm J., Ivica J., Kagan D., Svoboda P. Early postnatal development of rat brain is accompanied by generation of lipofuscin-like pigments. Molecular and Cellular Biochemistry. 2011;347(1-2):157–162. doi: 10.1007/s11010-010-0623-2. PubMed DOI

Wilhelm J., Vytášek R., Ošťádalová I., Vajner L. Evaluation of different methods detecting intracellular generation of free radicals. Molecular and Cellular Biochemistry. 2009;328(1-2):167–176. doi: 10.1007/s11010-009-0086-5. PubMed DOI

Wilhelm J., Ošt’ádalová I., Vytášek R., Vajner L. Generation of hydrogen peroxide in the developing rat heart: the role of elastin metabolism. Molecular and Cellular Biochemistry. 2011;358(1-2):215–220. doi: 10.1007/s11010-011-0937-8. PubMed DOI

Herget J., Wilhelm J., Novotná J., et al. A possible role of the oxidant tissue injury in the development of hypoxic pulmonary hypertension. Physiological Research. 2000;49(5):493–501. PubMed

Zámecník J., Vytásek R., Vencovský J., Vilím V. Immunolocalization of protein-bound 3-nitrotyrosine in inflammatory myopathies. Ceskoslovenská Patologie. 2011;47(2):62–65. PubMed

Vytášek R., Šedová L., Vilím V. Increased concentration of two different advanced glycation end-products detected by enzyme immunoassays with new monoclonal antibodies in sera of patients with rheumatoid arthritis. BMC Musculoskeletal Disorders. 2010;11, article 83 doi: 10.1186/1471-2474-11-83. PubMed DOI PMC

Benov L., Sztejnberg L., Fridovich I. Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radical Biology and Medicine. 1998;25(7):826–831. doi: 10.1016/S0891-5849(98)00163-4. PubMed DOI

Budd S. L., Castilho R. F., Nicholls D. G. Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells. FEBS Letters. 1997;415(1):21–24. doi: 10.1016/S0014-5793(97)01088-0. PubMed DOI

Zhao H., Joseph J., Fales H. M., et al. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(16):5727–5732. doi: 10.1073/pnas.0501719102. PubMed DOI PMC

Keston A. S., Brandt R. The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Analytical Biochemistry. 1965;11(1):1–5. doi: 10.1016/0003-2697(65)90034-5. PubMed DOI

Royall J. A., Ischiropoulos H. Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Archives of Biochemistry and Biophysics. 1993;302(2):348–355. doi: 10.1006/abbi.1993.1222. PubMed DOI

LeBel C. P., Ischiropoulos H., Bondy S. C. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chemical Research in Toxicology. 1992;5(2):227–231. doi: 10.1021/tx00026a012. PubMed DOI

Cathcart R., Schwiers E., Ames B. N. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Analytical Biochemistry. 1983;134(1):111–116. doi: 10.1016/0003-2697(83)90270-1. PubMed DOI

Kooy N. W., Royall J. A., Ischiropoulos H. Oxidation of 2′,7′-dichlorofluorescin by peroxynitrite. Free Radical Research. 1997;27(3):245–254. doi: 10.3109/10715769709065763. PubMed DOI

Fukuzawa K., Kishikawa K., Tokumura A., Tsukatani H., Shibuya M. Fluorescent pigments by covalent binding of lipid peroxidation by-products to protein and amino acids. Lipids. 1985;20(12):854–861. doi: 10.1007/BF02534768. PubMed DOI

Goto S., Nakamura A. Age-associated, oxidatively modified proteins: a critical evaluation. Age. 1997;20(2):81–89. doi: 10.1007/s11357-997-0008-y. PubMed DOI PMC

Bačáková L., Wilhelm J., Herget J., Novotná J., Eckhart A. Oxidized collagen stimulates proliferation of vascular smooth muscle cells. Experimental and Molecular Pathology. 1997;64(3):185–194. doi: 10.1006/exmp.1997.2219. PubMed DOI

González J. M., Briones A. M., Starcher B., et al. Influence of elastin on rat small artery mechanical properties. Experimental Physiology. 2005;90(4):463–468. doi: 10.1113/expphysiol.2005.030056. PubMed DOI

Crow J. P. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide—Biology and Chemistry. 1997;1(2):145–157. doi: 10.1006/niox.1996.0113. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...