A Method for Analysis of Nitrotyrosine-Containing Proteins by Immunoblotting Coupled with Mass Spectrometry
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- 2D electrophoresis, Immunoblotting, Mass spectrometry, Mitochondria, Nitrotyrosine,
- MeSH
- 2D gelová elektroforéza metody MeSH
- hmotnostní spektrometrie metody MeSH
- imunoblotting metody MeSH
- kyselina peroxydusitá chemie MeSH
- mitochondriální proteiny analýza metabolismus MeSH
- skot MeSH
- srdeční mitochondrie chemie metabolismus MeSH
- tyrosin analogy a deriváty analýza metabolismus MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3-nitrotyrosine MeSH Prohlížeč
- kyselina peroxydusitá MeSH
- mitochondriální proteiny MeSH
- tyrosin MeSH
Nitrotyrosine formation is caused by presence of reactive oxygen and nitrogen species. Nitration is a very selective process leading to specific modification of only a few tyrosines in protein molecule. 2D electrophoresis and western blotting techniques coupled with mass spectrometry are common methods used in analysis of proteome. Here we describe protocol for analysis of peroxynitrite-induced protein nitration in isolated mitochondria. Mitochondrial proteins are separated by 2D electrophoresis and transferred to nitrocellulose membrane. Membranes are then incubated with antibodies against nitrotyrosine. Positive spots are compared with corresponding Coomassie-stained gels, and protein nitration is confirmed with mass spectrometry techniques.
Zobrazit více v PubMed
Abello N, Kerstjens HAM, Postma DS et al (2009) Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res 8(7):3222–3238. https://doi.org/10.1021/pr900039c PubMed DOI
Ischiropoulos J (2003) Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun 305:776–783. https://doi.org/10.1016/S0006-291X(03)00814-3 PubMed DOI
Radi R (2013) Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res 46(2):550–559. https://doi.org/10.1021/ar300234c PubMed DOI
Pfeiffer S, Mayer B, Hemmens B (1999) Nitric oxide:chemical puzzles posed by a biological messenger. Angew Chem Int 38:1714–1731. https://doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1714::AID-ANIE1714>3.0.CO;2-3 DOI
Szabó C, Ischiropoulos H, Radi R (2007) Peroxynitrite:biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6(8):662–680. https://doi.org/10.1038/nrd2222 PubMed DOI
Weidinger A, Kozlov AV (2015) Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules 5(2):472–484. https://doi.org/10.3390/biom5020472 PubMed DOI PMC
Brugiere S, Kowalski S, Ferro M et al (2004) The hydrophobic proteome of mitochondrial membranes from Arabidopsis cell suspensions. Phytochemistry 65(12):1693–1707. https://doi.org/10.1016/j.phytochem.2004.03.028 PubMed DOI
Bartesaghi S, Ferrer-Sueta G, Peluffo G et al (2007) Protein tyrosine nitration in hydrophilic and hydrophobic environments. Amino Acids 32(4):501–515. https://doi.org/10.1007/s00726-006-0425-8 PubMed DOI
Kohutiar M, Ivica J, Vytášek R et al (2016) Comparison of the effects of tert-butyl hydroperoxide and peroxynitrite on the oxidative damage to isolated beef heart mitochondria. Physiol Res 65(4):617–626 DOI
Kohutiar M, Eckhardt A, Mikšík A et al (2018) Proteomic analysis of peroxynitrite-induced protein nitration in isolated beef heart mitochondria. Physiol Res 67:239–250. https://doi.org/10.33549/physiolres.933608 PubMed DOI
Haas DW, Elliott WB (1963) Oxidative phosphorylation and respiratory control in digitonin fragments of beef heart mitochondria. J Biol Chem 238:1132–1136 DOI
Rabilloud T (2008) Mitochondrial proteomics: analysis of a whole mitochondrial extract with two-dimensional electrophoresis. Methods Mol Biol 432:83–100. https://doi.org/10.1007/978-1-59745-028-7_6 PubMed DOI
Westermeier R, Naven T (2002) Proteomics in practice: a laboratory manual of proteome analysis. Wiley-VCH, Weinheim DOI
Shevchenko A, Tomas H, Havliš J et al (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860. https://doi.org/10.1038/nprot.2006.468 PubMed DOI
The UniProt Consortium (2016) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1099 DOI
Fišárková B, Vytášek R, Míková D et al (2004) Hyperoxia attenuated nitrotyrosine concentration in the lung tissue of rats with experimental pneumonia. Physiol Res 53(5):487–492 PubMed
Herget J, Wilhelm J, Novotná J et al (2000) A possible role of the oxidant tissue injury in the development of hypoxic pulmonary hypertension. Physiol Res 49(5):493–501 PubMed
Wilhelm J, Vytášek R, Uhlík J et al (2016) Oxidative stress in the developing rat brain due to production of reactive oxygen and nitrogen species. Oxid Med Cell Longev 2016:5057610. https://doi.org/10.1155/2016/5057610 PubMed DOI PMC
Zámečník J, Vytášek R, Vencovský J et al (2011) Immunolocalization of protein-bound 3-nitrotyrosine in inflammatory myopathies. Cesk Patol 47(2):62–65 PubMed
Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8(2):93–99. https://doi.org/10.1002/elps.1150080203 DOI
Eckhardt A, Jágr M, Pataridis S et al (2014) Proteomic analysis of human tooth pulp: proteomics of human tooth. J Endod 40(12):1961–1966. https://doi.org/10.1016/j.joen.2014.07.001 PubMed DOI
Mascot search engine: protein identification software for mass spec data. http://www.matrixscience.com/ . Accessed 16 Aug 2016.
Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906 DOI