Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
I 370
Austrian Science Fund FWF - Austria
PubMed
27157964
PubMed Central
PMC4860603
DOI
10.1038/srep25607
PII: srep25607
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called "priming effect" might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming.
Austrian Polar Research Institute Vienna Austria
Central Siberian Botanical Garden Siberian Branch of Russian Academy of Sciences Novosibirsk Russia
Department of Biology Centre for Geobiology University of Bergen Bergen Norway
Department of Bioscience Center for Geomicrobiology Aarhus Denmark
Department of Earth Sciences University of Gothenburg Gothenburg Sweden
Department of Ecogenomics and Systems Biology University of Vienna Vienna Austria
Department of Ecosystem Biology University of South Bohemia České Budějovice Czech Republic
Department of Microbiology and Ecosystem Science University of Vienna Vienna Austria
Department of Natural Resources and the Environment University of New Hampshire Durham NH USA
Department of Physical Geography Stockholm University Stockholm Sweden
Institute of Microbiology Ernst Moritz Arndt University Greifswald Germany
Institute of Soil Science Leibniz Universität Hannover Hannover Germany
Lancaster Environment Centre Lancaster University Lancaster UK
Soil Science and Soil Protection Martin Luther University Halle Wittenberg Halle Germany
VN Sukachev Institute of Forest Siberian Branch of Russian Academy of Sciences Krasnoyarsk Russia
See more in PubMed
Bhatt U.
Xu L.
Jones D., Nguyen C. & Finlay R. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321, 5–33 (2009).
Kuzyakov Y., Friedel J. & Stahr K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).
Allison S.
Fontaine S. PubMed
Blagodatskaya Е. & Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol. Fert. Soils 45, 115–131 (2008).
Craine J., Morrow C. & Fierer N. Microbial nitrogen limitation increases decomposition. Ecology, 88, 2105–2113 (2007). PubMed
Dijkstra F., Carrillo Y., Pendall E. & Morgan J. Rhizosphere priming: a nutrient perspective. Front. Microbiol. 4, 216 (2013). PubMed PMC
Hartley I.
Sistla S. PubMed
Lavoie M., Mack M. & Schuur E. Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils. J. Geophys. Res. 116, G03013 (2011).
Sistla S., Asao S. & Schimel J. Detecting microbial N-limitation in tussock tundra soil: Implications for Arctic soil organic carbon cycling. Soil Biol. Biochem. 55, 78–84 (2012).
Hartley I., Hopkins D., Sommerkorn M. & Wookey P. The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biol. Biochem. 42, 92–100 (2010).
Ping C. L., Jastrow J. D., Jorgenson M. T., Michaelson G. J. & Shur Y. L. Permafrost soils and carbon cycling. SOIL 1, 147–171 (2015).
Kaiser C.
Hugelius G.
Lawrence D. M., Slater A. G. & Swenson S. C. Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. J. Climate 25, 2207–2225 (2012).
Ernakovich J. G. PubMed
Schuur E. A. G. PubMed
Koyama A., Wallenstein M., Simpson R. & Moore J. Carbon-degrading enzyme activities stimulated by increased nutrient availability in arctic tundra soils. PLos ONE 8, e77212 (2013). PubMed PMC
Weintraub M. & Schimel J. Seasonal protein dynamics in Alaskan arctic tundra soils. Soil Biol. Biochem. 37, 1469–1475 (2005).
Karhu K. PubMed
German D., Marcelo K., Stone M. & Allison S. The Michaelis-Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study. Glob. Change Biol. 18, 1468–1479 (2012).
Schimel J., Bilbrough C. & Welker J. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol. Biochem. 36, 217–227 (2004).
Schaeffer S., Sharp E., Schimel J. & Welker J. Soil-plant N processes in a High Arctic ecosystem, NW Greenland are altered by long-term experimental warming and higher rainfall. Glob. Change Biol. 19, 3529–3539 (2013). PubMed
Gentsch N.
Sullivan P. & Welker J. Warming chambers stimulate early season growth of an arctic sedge: results of a minirhizotron field study. Oecologia 142, 616/626 (2005). PubMed
Deslippe J. & Simard S. Below-ground carbon transfer among PubMed
MacDougall A., Avis C. & Weaver A. Significant contribution to climate warming from the permafrost carbon feedback. Nature Geosci. 5, 719–721 (2012).
Harden J.
Ciais P.
Jackson R. B. PubMed
Biasi C.
Natali S. M., Schuur E. A. G., Webb E. E., Hicks Pries C. E. & Crummer K. G. Permafrost degradation stimulates carbon loss from experimentally warmed tundra. Ecology 95, 602–608 (2014). PubMed
Parker T. C., Subke J.-A. & Wookey P. A. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Glob. Change Biol. 21, 2070–2081 (2015). PubMed PMC
Degens B. P. Decreases in microbial functional diversity do not result in corresponding changes in decomposition under different moisture conditions. Soil Biol. Biochem. 30, 1989–2000 (1998).
Degens B. P., Schipper L. A., Sparling G. P. & Duncan L. C. Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol. Biochem. 33, 1143–1153 (2001).
Fierer N. & Schimel J. P. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol.Biochem. 34, 777–787 (2002).
Fierer N., Schimel J. P. & Holden P. A. Influence of drying-rewetting frequency on soil bacterial community structure. Microbial Ecol. 45, 63–71 (2003). PubMed
Sparling G. & West A. A comparison of gas-chromatography and differential respirometer methods to measure soil respiration and to estimate the soil microbial biomass. Pedobiologia 34, 103–112 (1990).
Brookes P. C., Landman A., Pruden G. & Jenkinson D. S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).
Wild B., Wanek W., Postl W. & Richter A. Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant PubMed PMC
Core Team R. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/ (2012).
Aulchenko Y., Ripke S., Isaacs A. & Duijn C. GenABEL: an R library for genome-wide association analysis. Bioinformatics 23, 1294–1296 (2007). PubMed
Pebesma E. J. & Bivand R. S. Classes and methods for spatial data in R. R News 5, 9–13 (2005).
South A. rworldmap: a new R package for mapping global data. The R Journal 3, 35–43 (2011).
Hijmans R., Cameron S., Parra J., Jones P. & Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Soil Survey Staff. Keys to soil taxonomy, 12
Microbiome assembly in thawing permafrost and its feedbacks to climate