Microbiome assembly in thawing permafrost and its feedbacks to climate
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35722720
PubMed Central
PMC9541943
DOI
10.1111/gcb.16231
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- mikrobiota * MeSH
- permafrost * chemie MeSH
- půda chemie MeSH
- zpětná vazba MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Arktida MeSH
- Názvy látek
- půda MeSH
The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.
Agriculture and Agri Food Canada Quebec Research and Development Centre Quebec Quebec Canada
Austrian Polar Research Institute Vienna Austria
BfR Federal Institute for Risk Assessment Berlin Germany
Byrd Polar and Climate Research Center Ohio State University Colombus Ohio USA
California State University Northridge Northridge California USA
Center for Earth System Research and Sustainability Universität Hamburg Hamburg Germany
Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
Center of Microbiome Science Ohio State University Colombus Ohio USA
Centre for Microbiology and Environmental Systems Science University of Vienna Vienna Austria
Centre for Polar Ecology University of South Bohemia Ceske Budejovice Czech Republic
Department of Environmental and Biological Sciences University of Eastern Finland Kuopio Finland
Department of Environmental Studies Amherst College Amherst Massachusetts USA
Department of Geosciences Princeton University Princeton New Jersey USA
Department of Plant and Wildlife Sciences Brigham Young University Provo Utah USA
EMergent Ecosystem Response to ChanGE Biology Integration Institute
GFZ German Research Centre for Geosciences Interface Geochemistry Potsdam Germany
GFZ German Research Centre for Geosciences Section Geomicrobiology Potsdam Germany
Institute of Arctic Biology University of Alaska Fairbanks Fairbanks Alaska USA
Institute of Physicochemical and Biological Problems of Soil Science Pushchino Russia
Institute of Soil Science Universität Hamburg Hamburg Germany
Lawrence Berkeley National Laboratory Berkeley California USA
Microbiology Department Ohio State University Columbus Ohio USA
Molecular Cellular and Biomedical Sciences University of New Hampshire Durham New Hampshire USA
Natural Resources and the Environment University of New Hampshire Durham New Hampshire USA
Natural Resources Institute Finland Helsinki Finland
U S Army Cold Regions Research and Engineering Laboratory Hanover New Hampshire USA
Zobrazit více v PubMed
Allan, J. , Ronholm, J. , Mykytczuk, N. C. S. , Greer, C. W. , Onstott, T. C. , & Whyte, L. G. (2014). Methanogen community composition and rates of methane consumption in Canadian high Arctic permafrost soils: Methane consumption by arctic permafrost methanogens. Environmental Microbiology Reports, 6(2), 136–144. 10.1111/1758-2229.12139 PubMed DOI
Allison, S. D. , & Martiny, J. B. (2008). Colloquium paper: Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 105, 11512–11519. 10.1073/pnas.0801925105 PubMed DOI PMC
Alves, R. J. E. , Kerou, M. , Zappe, A. , Bittner, R. , Abby, S. S. , Schmidt, H. A. , Pfeifer, K. , & Schleper, C. (2019). Ammonia oxidation by the Arctic terrestrial Thaumarchaeote Candidatus Nitrosocosmicus arcticus is stimulated by increasing temperatures. Frontiers in Microbiology, 10, 1–16. 10.3389/fmicb.2019.01571 PubMed DOI PMC
Alves, R. J. E. , Minh, B. Q. , Urich, T. , von Haeseler, A. , & Schleper, C. (2018). Unifying the global phylogeny and environmental distribution of ammonia‐oxidising archaea based on amoA genes. Nature Communications, 9, 1517. 10.1038/s41467-018-03861-1 PubMed DOI PMC
Biggs, C. R. , Yeager, L. A. , Bolser, D. G. , Bonsell, C. , Dichiera, A. M. , Hou, Z. , Keyser, S. R. , Khursigara, A. J. , Lu, K. , Muth, A. F. , Negrete, B. , & Erisman, B. E. (2020). Does functional redundancy affect ecological stability and resilience? A review and meta‐analysis. Ecosphere, 11. 10.1002/ecs2.3184 DOI
Anantharaman, K. , Brown, C. T. , Hug, L. A. , Sharon, I. , Castelle, C. J. , Probst, A. J. , Thomas, B. C. , Singh, A. , Wilkins, M. J. , Karaoz, U. , Brodie, E. L. , Williams, K. H. , Hubbard, S. S. , & Banfield, J. F. (2016). Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nature Communications, 7, 13219. 10.1038/ncomms13219 PubMed DOI PMC
Ayala‐del‐Rio, H. L. , Chain, P. S. , Grzymski, J. J. , Ponder, M. A. , Ivanova, N. , Bergholz, P. W. , Di Bartolo, G. , Hauser, L. , Land, M. , Bakermans, C. , Rodrigues, D. , Klappenbach, J. , Zarka, D. , Larimer, F. , Richardson, P. , Murray, A. , Thomashow, M. , & Tiedje, J. M. (2010). The genome sequence of Psychrobacter arcticus 273‐4, a Psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low‐temperature growth. Applied and Environmental Microbiology, 76(7), 2304–2312. 10.1128/AEM.02101-09 PubMed DOI PMC
Aziz, F. A. A. , Suzuki, K. , Ohtaki, A. , Sagegami, K. , Hirai, H. , Seno, J. , Mizuno, N. , Inuzuka, Y. , Saito, Y. , Tashiro, Y. , Hiraishi, A. , & Futamata, H. (2015). Interspecies interactions are an integral determinant of microbial community dynamics. Frontiers in Microbiology, 6, 1–11. 10.3389/fmicb.2015.01148 PubMed DOI PMC
Baas Becking, L. G. M. (1934). Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon.
Bakermans, C. , Tsapin, A. I. , Souza‐Egipsy, V. , Gilichinsky, D. A. , & Nealson, K. H. (2003). Reproduction and metabolism at ‐10°C of bacteria isolated from Siberian permafrost. Environmental Microbiology, 6, 1287–1291. PubMed
Barbato, R. A. , Jones, R. M. , Douglas, T. A. , Doherty, S. J. , Messan, K. , Foley, K. L. , Perkins, E. J. , Thurston, A. K. , & Garcia‐Reyero, N. (2022). Not all permafrost microbiomes are created equal: Influence of permafrost thaw on the soil microbiome in a laboratory incubation study. Soil Biology and Biochemistry, 167, 108605. 10.1016/j.soilbio.2022.108605 DOI
Borton, M. A. , Hoyt, D. W. , Roux, S. , Daly, R. A. , Welch, S. A. , Nicora, C. D. , Purvine, S. , Eder, E. K. , Hanson, A. J. , Sheets, J. M. , Morgan, D. M. , Wolfe, R. A. , Sharma, S. , Carr, T. R. , Cole, D. R. , Mouser, P. J. , Lipton, M. S. , Wilkins, M. J. , & Wrighton, K. C. (2018). Coupled laboratory and field investigations resolve microbial interactions that underpin persistence in hydraulically fractured shales. Proceedings of the National Academy of Sciences of the United States of America, 115, E6585–E6594. 10.1073/pnas.1800155115 PubMed DOI PMC
Beck, S. , Powell, J. R. , Drigo, B. , Cairney, J. W. G. , & Anderson, I. C. (2015). The role of stochasticity differs in the assembly of soil‐ and root‐associated fungal communities. Soil Biology and Biochemistry, 80, 18–25. 10.1016/j.soilbio.2014.09.010 DOI
Beisner, B. E. , Haydon, D. T. , & Cuddington, K. (2003). Alternative stable states in ecology. Frontiers in Ecology and the Environment, 1(7), 376–382. 10.1890/1540-9295(2003)001[0376:ASSIE]2.0.CO;2 DOI
Biskaborn, B. K. , Smith, S. L. , Noetzli, J. , Matthes, H. , Vieira, G. , Streletskiy, D. A. , Schoeneich, P. , Romanovsky, V. E. , Lewkowicz, A. G. , Abramov, A. , Allard, M. , Boike, J. , Cable, W. L. , Christiansen, H. H. , Delaloye, R. , Diekmann, B. , Drozdov, D. , Etzelmüller, B. , Grosse, G. , … Lantuit, H. (2019). Permafrost is warming at a global scale. Nature Communications, 10(264), 1–11. 10.1038/s41467-018-08240-4 PubMed DOI PMC
Blume‐Werry, G. , Milbau, A. , Teuber, L. M. , Johansson, M. , & Dorrepaal, E. (2019). Dwelling in the deep – Strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil. New Phytologist, 223(3), 1328–1339. 10.1111/nph.15903 PubMed DOI
Bottos, E. M. , Kennedy, D. W. , Romero, E. B. , Fansler, S. J. , Brown, J. M. , Bramer, L. M. , Chu, R. K. , Tfaily, M. M. , Jansson, J. K. , & Stegen, J. C. (2018). Dispersal limitation and thermodynamic constraints govern jspatial structure of permafrost microbial communities. FEMS Microbiology Ecology, 94(8), 1–14. 10.1093/femsec/fiy110 PubMed DOI
Brown, J. , Ferrians, O. , Heginbottom, J. A. , & Melnikov, E. (2002). Circum‐Arctic map of permafrost and ground‐ice conditions. Version 2. National Snow & Ice Data Center. http://nsidc.org/data/GGD318
Brown, J. M. , Labonté, J. M. , Brown, J. , Record, N. R. , Poulton, N. J. , Sieracki, M. E. , Logares, R. , & Stepanauskas, R. (2020). Single cell genomics reveals viruses consumed by marine protists. Frontiers in Microbiology, 11, 524828. 10.3389/fmicb.2020.524828 PubMed DOI PMC
Burke, C. , Thomas, T. , Lewis, M. , Steinberg, P. , & Kjelleberg, S. (2011). Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. The ISME Journal, 5, 590–600. 10.1038/ismej.2010.164 PubMed DOI PMC
Burkert, A. , Douglas, T. A. , Waldrop, M. P. , & Mackelprang, R. (2019). Changes in the active, dead, and dormant microbial community structure across a Pleistocene permafrost Chronosequence. Applied and Environmental Microbiology, 85(7), 1–16. 10.1128/AEM.02646-18 PubMed DOI PMC
Cadotte, M. W. , Loreau, A. E. M ., & Losos, E. J. B . (2006). Dispersal and species diversity: A meta‐analysis. The American Naturalist, 167(6), 913–924. JSTOR. 10.1086/504850 PubMed
Cairns, J. , Ruokolainen, L. , Hultman, J. , Tamminen, M. , Virta, M. , & Hiltunen, T. (2018). Ecology determines how low antibiotic concentration impacts community composition and horizontal transfer of resistance genes. Communications Biology, 1(1), 1–8. 10.1038/s42003-018-0041-7 PubMed DOI PMC
Comte, J. , Monier, A. , Crevecoeur, S. , Lovejoy, C. , & Vincent, W. F. (2016). Microbial biogeography of permafrost thaw ponds across the changing northern landscape. Ecography, 39(7), 609–618. 10.1111/ecog.01667 DOI
Coolen, M. J. L. , & Orsi, W. D. (2015). The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Frontiers in Microbiology, 6, 1–14. 10.3389/fmicb.2015.00197 PubMed DOI PMC
Coolen, M. J. L. , van de Giessen, J. , Zhu, E. Y. , & Wuchter, C. (2011). Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw. Environmental Microbiology, 13(8), 2299–2314. 10.1111/j.1462-2920.2011.02489.x PubMed DOI
Davis, N. (2001). Permafrost: A guide to frozen ground in transition. University of Alaska Press.
de Vries, F. T. , & Wallenstein, M. D. (2017). Below‐ground connections underlying above‐ground food production: A framework for optimising ecological connections in the rhizosphere. Journal of Ecology, 105(4), 913–920. 10.1111/1365-2745.12783 DOI
Deng, J. , Gu, Y. , Zhang, J. , Xue, K. , Qin, Y. , Yuan, M. , Yin, H. , He, Z. , Wu, L. , Schuur, E. A. G. , Tiedje, J. M. , & Zhou, J. (2015). Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska. Molecular Ecology, 24(1), 222–234. 10.1111/mec.13015 PubMed DOI
Devictor, V. , Clavel, J. , Julliard, R. , Lavergne, S. , Mouillot, D. , Thuiller, W. , Venail, P. , Villéger, S. , & Mouquet, N. (2010). Defining and measuring ecological specialization. Journal of Applied Ecology, 47, 15–25. 10.1111/j.1365-2664.2009.01744.x DOI
Dini‐Andreote, F. , Stegen, J. C. , van Elsas, J. D. , & Salles, J. F. (2015). Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences, 112(11), E1326–E1332. 10.1073/pnas.1414261112 PubMed DOI PMC
Doherty, S. J. , Barbato, R. A. , Grandy, A. S. , Thomas, W. K. , Monteux, S. , Dorrepaal, E. , Johansson, M. , & Ernakovich, J. G. (2020). The transition from stochastic to deterministic bacterial community assembly during permafrost thaw succession. Frontiers in Microbiology, 11, 1–17. 10.3389/fmicb.2020.596589 PubMed DOI PMC
Drake, T. W. , Wickland, K. P. , Spencer, R. G. M. , McKnight, D. M. , & Striegl, R. G. (2015). Ancient low–molecular‐weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proceedings of the National Academy of Sciences, 112(45), 13946–13951. 10.1073/pnas.1511705112 PubMed DOI PMC
Emerson, J. B. , Roux, S. , Brum, J. R. , Bolduc, B. , Woodcroft, B. J. , Jang, H. B. , Singleton, C. M. , Solden, L. M. , Naas, A. E. , Boyd, J. A. , Hodgkins, S. B. , Wilson, R. M. , Trubl, G. , Li, C. , Frolking, S. , Pope, P. B. , Wrighton, K. C. , Crill, P. M. , Chanton, J. P. , … Sullivan, M. B. (2018). Host‐linked soil viral ecology along a permafrost thaw gradient. Nature Microbiology, 3(8), 870–880. 10.1038/s41564-018-0190-y PubMed DOI PMC
Ernakovich, J. G. , Lynch, L. M. , Brewer, P. E. , Calderon, F. J. , & Wallenstein, M. D. (2017). Redox and temperature‐sensitive changes in microbial communities and soil chemistry dictate greenhouse gas loss from thawed permafrost. Biogeochemistry, 134(1–2), 183–200. 10.1007/s10533-017-0354-5 DOI
Ernakovich, J. G. , & Wallenstein, M. D. (2015). Permafrost microbial community traits and functional diversity indicate low activity at in situ thaw temperatures. Soil Biology & Biochemistry, 87, 78–89. 10.1016/j.soilbio.2015.04.009 DOI
Evans, S. , Martiny, J. B. H. , & Allison, S. D. (2017). Effects of dispersal and selection on stochastic assembly in microbial communities. The ISME Journal, 11(1), 176–185. 10.1038/ismej.2016.96 PubMed DOI PMC
Feng, J. , Wang, C. , Lei, J. , Yang, Y. , Yan, Q. , Zhou, X. , Tao, X. , Ning, D. , Yuan, M. M. , Qin, Y. , Shi, Z. J. , Guo, X. , He, Z. , Nostrand, J. D. V. , Wu, L. , Bracho‐Garillo, R. G. , Penton, C. R. , Cole, J. R. , Konstantinidis, K. T. , … Zhou, J. (2020). Warming‐induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome, 8(1), 1–12. 10.1186/s40168-019-0778-3 PubMed DOI PMC
Ferrenberg, S. , O'Neill, S. P. , Knelman, J. E. , Todd, B. , Duggan, S. , Bradley, D. , Robinson, T. , Schmidt, S. K. , Townsend, A. R. , Williams, M. W. , Cleveland, C. C. , Melbourne, B. A. , Jiang, L. , & Nemergut, D. R. (2013). Changes in assembly processes in soil bacterial communities following a wildfire disturbance. The ISME Journal, 7(6), 1102–1111. 10.1038/ismej.2013.11 PubMed DOI PMC
Finger, R. A. , Turetsky, M. R. , Kielland, K. , Ruess, R. W. , Mack, M. C. , & Euskirchen, E. S. (2016). Effects of permafrost thaw on nitrogen availability and plant–soil interactions in a boreal Alaskan lowland. Journal of Ecology, 104(6), 1542–1554. 10.1111/1365-2745.12639 DOI
Fisher, J. P. , Estop‐Aragones, C. , Thierry, A. , Charman, D. J. , Wolfe, S. A. , Hartley, I. P. , Murton, J. B. , Williams, M. , & Phoenix, G. K. (2016). The influence of vegetation and soil characteristics on active‐layer thickness of permafrost soils in boreal forest. Global Change Biology, 22(9), 3127–3140. 10.1111/gcb.13248 PubMed DOI PMC
Fodelianakis, S. , Valenzuela‐Cuevas, A. , Barozzi, A. , & Daffonchio, D. (2021). Direct quantification of ecological drift at the population level in synthetic bacterial communities. The ISME Journal, 15(1), 55–66. 10.1038/s41396-020-00754-4 PubMed DOI PMC
Frank‐Fahle, B. A. , Yergeau, E. , Greer, C. W. , Lantuit, H. , & Wagner, D. (2014). Microbial functional potential and community composition in permafrost‐affected soils of the NW Canadian Arctic. PLoS One, 9, e84761–e84712. 10.1371/journal.pone.0084761 PubMed DOI PMC
Fukami, T. (2015). Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 46(1), 1–23. 10.1146/annurev-ecolsys-110411-160340 DOI
Geisen, S. , Hu, S. , dela Cruz, T. E. E. , & Veen, G. F. (2021). Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes. The ISME Journal, 15(2), 618–621. 10.1038/s41396-020-00792-y PubMed DOI PMC
Geisen, S. , Mitchell, E. A. D. , Adl, S. , Bonkowski, M. , Dunthorn, M. , Ekelund, F. , Fernández, L. D. , Jousset, A. , Krashevska, V. , Singer, D. , Spiegel, F. W. , Walochnik, J. , & Lara, E. (2018). Soil protists: A fertile frontier in soil biology research. FEMS Microbiology Reviews, 42, 293–323. 10.1093/femsre/fuy006 PubMed DOI
Gilichinsky, D. A. , Soina, V. S. , & Petrova, M. A. (1993). Cryoprotective properties of water in the earth cryolithosphere and its role in exobiology. Origins of Life and Evolution of the Biosphere: The Journal of the International Society for the Study of the Origin of Life, 23(1), 65–75. 10.1007/BF01581991 PubMed DOI
Graham, D. E. , Wallenstein, M. D. , Vishnivetskaya, T. A. , Waldrop, M. P. , Phelps, T. J. , Pfiffner, S. M. , Onstott, T. C. , Whyte, L. G. , Rivkina, E. M. , Gilichinsky, D. A. , Elias, D. A. , Mackelprang, R. , VerBerkmoes, N. C. , Hettich, R. L. , Wagner, D. , Wullschleger, S. D. , & Jansson, J. K. (2012). Microbes in thawing permafrost: The unknown variable in the climate change equation. The ISME Journal, 6(4), 709–712. 10.1038/ismej.2011.163 PubMed DOI PMC
Graham, E. B. , & Stegen, J. C. (2017). Dispersal‐based microbial community assembly decreases biogeochemical function. PRO, 5(4), 65. 10.3390/pr5040065 DOI
Hall, E. K. , Bernhardt, E. S. , Bier, R. L. , Bradford, M. A. , Boot, C. M. , Cotner, J. B. , del Giorgio, P. A. , Evans, S. E. , Graham, E. B. , Jones, S. E. , Lennon, J. T. , Locey, K. J. , Nemergut, D. , Osborne, B. B. , Rocca, J. D. , Schimel, J. P. , Waldrop, M. P. , & Wallenstein, M. D. (2018). Understanding how microbiomes influence the systems they inhabit. Nature Microbiology, 3(9), 977–982. 10.1038/s41564-018-0201-z PubMed DOI
Hanson, C. A. , Fuhrman, J. A. , Horner‐Devine, M. C. , & Martiny, J. B. H. (2012). Beyond biogeographic patterns: Processes shaping the microbial landscape. Nature Reviews Microbiology, 10(7), 497–506. 10.1038/nrmicro2795 PubMed DOI
Heslop, J. K. , Winkel, M. , Walter Anthony, K. M. , Spencer, R. , Podgorski, D. C. , Zito, P. , Neumann, R. B. , & Liebner, S. (2020). Microbe‐substrate interactions following simulated microbial inoculation to thawed yedoma permafrost. American Geophysical Union Fall Meeting, abstract, B022–B0017. https://ui.adsabs.harvard.edu/abs/2020AGUFMB022.0017H/abstract
Hewitt, R. E. , Bent, E. , Hollingsworth, T. N. , Chapin, F. S. C., III , & Taylor, D. L. (2013). Resilience of Arctic mycorrhizal fungal communities after wildfire facilitated by resprouting shrubs. Écoscience, 20(3), 296–310. 10.2980/20-3-3620 DOI
Hewitt, R. E. , DeVan, M. R. , Lagutina, I. V. , Genet, H. , McGuire, A. D. , Taylor, D. L. , & Mack, M. C. (2020). Mycobiont contribution to tundra plant acquisition of permafrost‐derived nitrogen. New Phytologist, 226(1), 126–141. 10.1111/nph.16235 PubMed DOI
Hewitt, R. E. , Hollingsworth, T. N. , Stuart Chapin, I. I. I. F. , & Lee Taylor, D. (2016). Fire‐severity effects on plant–fungal interactions after a novel tundra wildfire disturbance: Implications for arctic shrub and tree migration. BMC Ecology, 16, 25. 10.1186/s12898-016-0075-y PubMed DOI PMC
Holden, S. R. , Rogers, B. M. , Treseder, K. K. , & Randerson, J. T. (2016). Fire severity influences the response of soil microbes to a boreal forest fire. Environmental Research Letters, 11, 035004. 10.1088/1748-9326/11/3/035004 DOI
Holm, S. , Walz, J. , Horn, F. , Yang, S. , Grigoriev, M. N. , Wagner, D. , Knoblauch, C. , & Liebner, S. (2020). Methanogenic response to long‐term permafrost thaw is determined by paleoenvironment. FEMS Microbiology Ecology, 96(3), 1–13. 10.1093/femsec/fiaa021 PubMed DOI PMC
Horner‐Devine, M. C. , & Bohannan, B. J. M. (2006). Phylogenetic clustering and overdispersion in bacterial communities. Ecology, 87(sp7), S100–S108. 10.1890/0012-9658(2006)87[100:PCAOIB]2.0.CO;2 PubMed DOI
Hoshino, T. , Xiao, N. , & Tkachenko, O. B. (2009). Cold adaptation in the phytopathogenic fungi causing snow molds. Mycoscience, 50(1), 26–38. 10.1007/s10267-008-0452-2 DOI
Hu, W. , Zhang, Q. , Tian, T. , Li, D. , Cheng, G. , Mu, J. , Wu, Q. , Niu, F. , Stegen, J. C. , An, L. , & Feng, H. (2015). Relative roles of deterministic and stochastic processes in driving the vertical distribution of bacterial communities in a permafrost Core from the Qinghai‐Tibet plateau, China. PLOS ONE, 10(12), e0145747. 10.1371/journal.pone.0145747 PubMed DOI PMC
Huang, J. , Zhang, X. , Zhang, Q. , Lin, Y. , Hao, M. , Luo, Y. , Zhao, Z. , Yao, Y. , Chen, X. , Wang, L. , Nie, S. , Yin, Y. , Xu, Y. , & Zhang, J. (2017). Recently amplified arctic warming has contributed to a continual global warming trend. Nature Climate Change, 7(12), 875–879. 10.1038/s41558-017-0009-5 DOI
Hug, L. A. , & Co, R. (2018). It takes a village: Microbial communities thrive through interactions and metabolic handoffs. MSystems, 3(2), 1–5. 10.1128/mSystems.00152-17 PubMed DOI PMC
Hugelius, G. , Strauss, J. , Zubrzycki, S. , Harden, J. W. , Schuur, E. A. G. , Ping, C. L. , Schirrmeister, L. , Grosse, G. , Michaelson, G. J. , Koven, C. D. , O'Donnell, J. A. , Elberling, B. , Mishra, U. , Camill, P. , Yu, Z. , Palmtag, J. , & Kuhry, P. (2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11(23), 6573–6593. 10.5194/bg-11-6573-2014 DOI
Hughes‐Martiny, J. B. , Bohannan, B. J. M. , Brown, J. H. , Colwell, R. K. , Fuhrman, J. A. , Green, J. L. , Horner‐Devine, M. C. , Kane, M. , Krumins, J. A. , Kuske, C. R. , Morin, P. J. , Naeem, S. , Øvreås, L. , Reysenbach, A.‐L. , Smith, V. H. , & Staley, J. T. (2006). Microbial biogeography: Putting microorganisms on the map. Nature Reviews Microbiology, 4(2), 102–112. 10.1038/nrmicro1341 PubMed DOI
Hultman, J. , Waldrop, M. P. , Mackelprang, R. , David, M. M. , McFarland, J. , Blazewicz, S. J. , Harden, J. , Turetsky, M. R. , McGuire, A. D. , Shah, M. B. , VerBerkmoes, N. C. , Lee, L. H. , Mavrommatis, K. , & Jansson, J. K. (2015). Multi‐omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature, 521(7551), 208–212. 10.1038/nature14238 PubMed DOI
Jia, Y. , & Whalen, J. K. (2020). A new perspective on functional redundancy and phylogenetic niche conservatism in soil microbial communities. Pedosphere, 30, 18–24. 10.1016/s1002-0160(19)60826-x DOI
Johnston, E. R. , Hatt, J. K. , He, Z. , Wu, L. , Guo, X. , Luo, Y. , Schuur, E. A. G. , Tiedje, J. M. , Zhou, J. , & Konstantinidis, K. T. (2019). Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proceedings of the National Academy of Sciences, 116, 15096–15105. 10.1073/pnas.1901307116 PubMed DOI PMC
Jorgenson, M. T. , Harden, J. W. , Kanevskiy, M. , O'Donnell, J. A. , Wickland, K. P. , Ewing, S. A. , Manies, K. L. , Zhuang, Q. , Shur, Y. , Striegl, R. , & Koch, J. (2013). Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environmental Research Letters, 8(3), 35017.
Jorgenson, M. T. , Kanevskiy, M. , Shur, Y. , Moskalenko, N. , Brown, D. R. N. , Wickland, K. , Striegl, R. , & Koch, J. (2015). Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization. Journal of Geophysical Research: Earth Surface, 120(11), 2280–2297. 10.1002/2015JF003602 DOI
Kasischke, E. S. , & Johnstone, J. F. (2005). Variation in postfire organic layer thickness in a black spruce forest complex in interior Alaska and its effects on soil temperature and moisture. Canadian Journal of Forest Research‐Revue Canadienne De Recherche Forestiere, 35(9), 2164–2177. 10.1139/x05-159 DOI
Keys to Soil Taxonomy | NRCS Soils . (2014). Retrieved July 8, 2020, from https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/?cid=nrcs142p2_053580
Knelman, J. E. , & Nemergut, D. R. (2014). Changes in community assembly may shift the relationship between biodiversity and ecosystem function. Frontiers in Microbiology, 5, 1–5. 10.3389/fmicb.2014.00424 PubMed DOI PMC
Knoblauch, C. , Beer, C. , Liebner, S. , Grigoriev, M. N. , & Pfeiffer, E.‐M. (2018). Methane production as key to the greenhouse gas budget of thawing permafrost. Nature Climate Change, 8(4), 309–312. 10.1038/s41558-018-0095-z DOI
Knoblauch, C. , Beer, C. , Schuett, A. , Sauerland, L. , Liebner, S. , Steinhof, A. , Rethemeyer, J. , Grigoriev, M. N. , Faguet, A. , & Pfeiffer, A.‐M. (2021). Carbon dioxide and methane release following abrupt thaw of Pleistocene permafrost deposits in Arctic Siberia. Journal of Geophysical Research: Biogeosciences, 126, 1–18. 10.1029/2021JG006543 DOI
Knoblauch, C. , Zimmermann, U. , Blumenberg, M. , Michaelis, W. , & Pfeiffer, E.‐M. M. (2008). Methane turnover and temperature response of methane‐oxidizing bacteria in permafrost‐affected soils of Northeast Siberia. Soil Biology & Biochemistry, 40(12), 3004–3013. 10.1016/j.soilbio.2008.08.020 DOI
Kokelj, S. , & Jorgenson, M. (2013). Advances in Thermokarst research. Permafrost and Periglacial Processes, 24(2), 108–119. 10.1002/ppp.1779 DOI
Konstantinidis, K. T. , Rosselló‐Móra, R. , & Amann, R. (2017). Uncultivated microbes in need of their own taxonomy. The ISME Journal, 11, 2399–2406. 10.1038/ismej.2017.113 PubMed DOI PMC
Leewis, M.‐C. , Berlemont, R. , Podgorski, D. C. , Srinivas, A. , Zito, P. , Spencer, R. G. M. , McFarland, J. , Douglas, T. A. , Conaway, C. H. , Waldrop, M. , & Mackelprang, R. (2020). Life at the frozen limit: Microbial carbon metabolism across a late Pleistocene permafrost Chronosequence. Frontiers in Microbiology, 11, 1–15. 10.3389/fmicb.2020.01753 PubMed DOI PMC
Leibold, M. A. , Holyoak, M. , Mouquet, N. , Amarasekare, P. , Chase, J. M. , Hoopes, M. F. , Holt, R. D. , Shurin, J. B. , Law, R. , Tilman, D. , Loreau, M. , & Gonzalez, A. (2004). The metacommunity concept: A framework for multi‐scale community ecology. Ecology Letters, 7(7), 601–613. 10.1111/j.1461-0248.2004.00608.x DOI
Lewkowicz, A. G. (1990). Morphology, frequency, and magnitude of active‐layer detachment slides, Fosheim peninsula, Ellesmere Island, N.W.T. Permafrost — Canada. Proceedings, 5th Canadian Permafrost Conference (Vol. 9, pp. 111–118). Collection Nordicana 54.
Liebner, S. , Rublack, K. , Stuehrmann, T. , & Wagner, D. (2009). Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. Microbial Ecology, 57(1), 25–35. 10.1007/s00248-008-9411-x PubMed DOI
Liu, F. , Kou, D. , Chen, Y. , Xue, K. , Ernakovich, J. G. , Chen, L. , Yang, G. , & Yang, Y. (2021). Altered microbial structure and function after thermokarst formation. Global Change Biology, 27, 823–835. 10.1111/gcb.15438 PubMed DOI
Louca, S. , & Doebeli, M. (2016). Transient dynamics of competitive exclusion in microbial communities. Environmental Microbiology, 18, 1863–1874. 10.1111/1462-2920.13058 PubMed DOI
Louca, S. , Polz, M. F. , Mazel, F. , Albright, M. B. N. , Huber, J. A. , O'Connor, M. I. , Ackermann, M. , Hahn, A. S. , Srivastava, D. S. , Crowe, S. A. , Doebeli, M. , & Parfrey, L. W. (2018). Function and functional redundancy in microbial systems. Nature Ecology & Evolution, 2, 936–943. 10.1038/s41559-018-0519-1 PubMed DOI
Mackelprang, R. , Burkert, A. , Haw, M. , Mahendrarajah, T. , Conaway, C. H. , Douglas, T. A. , & Waldrop, M. P. (2017). Microbial survival strategies in ancient permafrost: Insights from metagenomics. The ISME Journal, 11(10), 2305–2318. 10.1038/ismej.2017.93 PubMed DOI PMC
Mackelprang, R. , Waldrop, M. P. , DeAngelis, K. M. , David, M. M. , Chavarria, K. L. , Blazewicz, S. J. , Rubin, E. M. , & Jansson, J. K. (2011). Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature, 480(7377), 368–371. 10.1038/nature10576 PubMed DOI
Martinez, M. A. , Woodcroft, B. J. , Ignacio Espinoza, J. C. , Zayed, A. A. , Singleton, C. M. , Boyd, J. A. , Li, Y.‐F. , Purvine, S. , Maughan, H. , Hodgkins, S. B. , Anderson, D. , Sederholm, M. , Temperton, B. , Bolduc, B. , Saleska, S. R. , Tyson, G. W. , Rich, V. I. , Saleska, S. R. , Tyson, G. W. , & Rich, V. I. (2019). Discovery and ecogenomic context of a global Caldiserica‐related phylum active in thawing permafrost, Candidatus Cryosericota phylum nov., ca. Cryosericia class nov., ca. Cryosericales Ord. Nov., ca. Cryosericaceae fam. Nov., comprising the four species Cryosericum septentrionale gen. Nov. Sp. Nov., ca. C. Hinesii sp. Nov., ca. C. Odellii sp. Nov., ca. C. Terrychapinii sp. Nov. Systematic and Applied Microbiology, 42(1), 54–66. 10.1016/j.syapm.2018.12.003 PubMed DOI
Martiny, J. B. H. , Jones, S. E. , Lennon, J. T. , & Martiny, A. C. (2015). Microbiomes in light of traits: A phylogenetic perspective. Science, 350(6261), 649–657. 10.1126/science.aac9323 PubMed DOI
Marushchak, M. E. , Kerttula, J. , Diáková, K. , Faguet, A. , Gil, J. , Grosse, G. , Knoblauch, C. , Lashchinskiy, N. , Martikainen, P. J. , Morgenstern, A. , Nykamb, M. , Ronkainen, J. G. , Siljanen, H. M. P. , van Delden, L. , Voigt, C. , Zimov, N. , Zimov, S. , & Biasi, C. (2021). Thawing Yedoma permafrost is a neglected nitrous oxide source. Nature Communications, 12, 7107. 10.1038/s41467-021-27386-2 PubMed DOI PMC
McCalley, C. K. , Woodcroft, B. J. , Hodgkins, S. B. , Wehr, R. A. , Kim, E.‐H. , Mondav, R. , Crill, P. M. , Chanton, J. P. , Rich, V. I. , Tyson, G. W. , & Saleska, S. R. (2014). Methane dynamics regulated by microbial community response to permafrost thaw. Nature, 514(7523), 478–481. 10.1038/nature13798 PubMed DOI
Mekonnen, Z. A. , Riley, W. J. , Berner, L. T. , Bouskill, N. J. , Torn, M. S. , Iwahana, G. , Breen, A. L. , Myers‐Smith, I. H. , Criado, M. G. , Liu, Y. , Euskirchen, E. S. , Goetz, S. J. , Mack, M. C. , & Grant, R. F. (2021). Arctic tundra shrubification: A review of mechanisms and impacts on ecosystem carbon balance. Environmental Research Letters, 16(5), 053001. 10.1088/1748-9326/abf28b DOI
Messan, K. S. , Jones, R. M. , Doherty, S. J. , Foley, K. , Douglas, T. A. , & Barbato, R. A. (2020). The role of changing temperature in microbial metabolic processes during permafrost thaw. PLoS One, 15(4), e0232169. 10.1371/journal.pone.0232169 PubMed DOI PMC
Mitzscherling, J. , Horn, F. , Winterfeld, M. , Mahler, L. , Kallmeyer, J. , Overduin, P. P. , Schirrmeister, L. , Winkel, M. , Grigoriev, M. N. , Wagner, D. , & Liebner, S. (2019). Microbial community composition and abundance after millennia of submarine permafrost warming. Biogeosciences, 16(19), 3941–3958. 10.5194/bg-16-3941-2019 DOI
Moigne, A. L. , Bartosiewicz, M. , Schaepman‐Strub, G. , Abiven, S. , & Pernthaler, J. (2020). The biogeochemical variability of Arctic thermokarst ponds is reflected by stochastic and niche‐driven microbial community assembly processes. Environmental Microbiology, 22(11), 4847–4862. 10.1111/1462-2920.15260 PubMed DOI PMC
Mondav, R. , McCalley, C. K. , Hodgkins, S. B. , Frolking, S. , Saleska, S. R. , Rich, V. I. , Chanton, J. P. , & Crill, P. M. (2017). Microbial network, phylogenetic diversity and community membership in the active layer across a permafrost thaw gradient. Environmental Microbiology, 19(8), 3201–3218. 10.1111/1462-2920.13809 PubMed DOI
Mondav, R. , Woodcroft, B. J. , Kim, E.‐H. , McCalley, C. K. , Hodgkins, S. B. , Crill, P. M. , Chanton, J. , Hurst, G. B. , VerBerkmoes, N. C. , Saleska, S. R. , Hugenholtz, P. , Rich, V. I. , & Tyson, G. W . (2014). Discovery of a novel methanogen prevalent in thawing permafrost. Nature Communications, 5(1), 1–7. 10.1038/ncomms4212 PubMed DOI
Monteux, S. , Keuper, F. , Fontaine, S. , Gavazov, K. , Hallin, S. , Juhanson, J. , Krab, E. J. , Revaillot, S. , Verbruggen, E. , Walz, J. , Weedon, J. T. , & Dorrepaal, E. (2020). Carbon and nitrogen cycling in Yedoma permafrost controlled by microbial functional limitations. Nature Geoscience, 13, 794–798. 10.1038/s41561-020-00662-4 DOI
Monteux, S. , Weedon, J. T. , Blume‐Werry, G. , Gavazov, K. , Jassey, V. E. J. , Johansson, M. , Keuper, F. , Olid, C. , & Dorrepaal, E. (2018). Long‐term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration. The ISME Journal, 12, 2129–2141. 10.1038/s41396-018-0176-z PubMed DOI PMC
Mykytczuk, N. C. S. , Foote, S. J. , Omelon, C. R. , Southam, G. , Greer, C. W. , & Whyte, L. G. (2013). Bacterial growth at −15°C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. The ISME Journal, 7(6), 1211–1226. 10.1038/ismej.2013.8 PubMed DOI PMC
Nemergut, D. R. , Schmidt, S. K. , Fukami, T. , O'Neill, S. P. , Bilinski, T. M. , Stanish, L. F. , Knelman, J. E. , Darcy, J. L. , Lynch, R. C. , Wickey, P. , & Ferrenberg, S. (2013). Patterns and processes of microbial community assembly. Microbiology and Molecular Biology Reviews, 77(3), 342–356. 10.1128/MMBR.00051-12 PubMed DOI PMC
Ning, D. , Deng, Y. , Tiedje, J. M. , & Zhou, J. (2019). A general framework for quantitatively assessing ecological stochasticity. Proceedings of the National Academy of Sciences, 116(34), 16892–16898. 10.1073/pnas.1904623116 PubMed DOI PMC
Overland, J. (2016). Surface Air Temperature. Arctic Program. https://www.arctic.noaa.gov/Report‐Card/Report‐Card‐2016/ArtMID/5022/ArticleID/271/Surface‐Air‐Temperature
Rantanen, M. , Karpechko, A. , Lipponen, A. , Nordling, K. , Hyvärinen, O. , Ruosteenoja, K. , Vihma, T. , Laaksonen, A. 2021. The Arctic has warmed four times faster than the globe since 1980. Research Square 10.21203/rs.3.rs-654081/v1 (preprint). DOI
Raymond‐Bouchard, I. , Goordial, J. , Zolotarov, Y. , Ronholm, J. , Stromvik, M. , Bakermans, C. , & Whyte, L. G. (2018). Conserved genomic and amino acid traits of cold adaptation in subzero‐growing Arctic permafrost bacteria. FEMS Microbiology Ecology, 94(4), 1–13. 10.1093/femsec/fiy023 PubMed DOI
Rillig, M. C. , Muller, L. A. , & Lehmann, A. (2017). Soil aggregates as massively concurrent evolutionary incubators. The ISME Journal, 11(9), 1943–1948. 10.1038/ismej.2017.56 PubMed DOI PMC
Robroek, B. J. M. , Jassey, V. E. J. , Payne, R. J. , Martí, M. , Bragazza, L. , Bleeker, A. , Buttler, A. , Caporn, S. J. M. , Dise, N. B. , Kattge, J. , Zając, K. , Svensson, B. H. , van Ruijven, J. , & Verhoeven, J. T. A. (2017). Taxonomic and functional turnover are decoupled in European peat bogs. Nature Communications, 8, 1161. 10.1038/s41467-017-01350-5 PubMed DOI PMC
Ruff, S. E. , Biddle, J. F. , Teske, A. P. , Knittel, K. , Boetius, A. , & Ramette, A. (2015). Global dispersion and local diversification of the methane seep microbiome. Proceedings of the National Academy of Sciences, 112(13), 4015–4020. 10.1073/pnas.1421865112 PubMed DOI PMC
Salmon, V. G. , Schädel, C. , Bracho, R. , Pegoraro, E. , Celis, G. , Mauritz, M. , Mack, M. C. , & Schuur, E. A. G. (2018). Adding depth to our understanding of nitrogen dynamics in permafrost soils. Journal of Geophysical Research: Biogeosciences, 123(8), 2497–2512. 10.1029/2018JG004518 DOI
Salazar, A. , Rousk, K. , Jónsdóttir, I. S. , Bellenger, J. , & Andrésson, Ó. S. (2020). Faster nitrogen cycling and more fungal and root biomass in cold ecosystems under experimental warming: A meta‐analysis. Ecology, 101, e02938. 10.1002/ecy.2938 PubMed DOI PMC
Schimel, J. P. , & Schaeffer, S. M. (2012). Microbial control over carbon cycling in soil. Frontiers in Microbiology, 3, 348. 10.3389/fmicb.2012.00348 PubMed DOI PMC
Schostag, M. , Priemé, A. , Jacquiod, S. , Russel, J. , Ekelund, F. , & Jacobsen, C. S. (2019). Bacterial and protozoan dynamics upon thawing and freezing of an active layer permafrost soil. The ISME Journal, 13(5), 1345–1359. 10.1038/s41396-019-0351-x PubMed DOI PMC
Schütte, U. M. E. , Henning, J. A. , Ye, Y. , Bowling, A. , Ford, J. , Genet, H. , Waldrop, M. P. , Turetsky, M. R. , White, J. R. , & Bever, J. D. (2019). Effect of permafrost thaw on plant and soil fungal community in a boreal forest: Does fungal community change mediate plant productivity response? Journal of Ecology, 107(4), 1737–1752. 10.1111/1365-2745.13139 DOI
Schuur, E. A. G. , & Mack, M. C. (2018). Ecological response to permafrost thaw and consequences for local and global ecosystem services. Annual Review of Ecology, Evolution, and Systematics, 49(1), 279–301. 10.1146/annurev-ecolsys-121415-032349 DOI
Schuur, E. A. G. , McGuire, A. D. , Romanovsky, V. , Schädel, C. , & Mack, M. C. (2018). Chapter 11: Arctic and boreal carbon. In Cavallaro N., Shrestha G., Birdsey R., Mayes M. A., Najjar R. G., Reed S. C., Romero‐Lankao P., & Zhu Z. (Eds.), In: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report (pp. 428–468). U.S. Global Change Research Program. 10.7930/SOCCR2.2018.Ch11
Schuur, E. A. G. , McGuire, A. D. , Schädel, C. , Grosse, G. , Harden, J. W. , Hayes, D. J. , Hugelius, G. , Koven, C. D. , Kuhry, P. , Lawrence, D. M. , Natali, S. M. , Olefeldt, D. , Romanovsky, V. E. , Schaefer, K. , Turetsky, M. R. , Treat, C. C. , & Vonk, J. E. (2015). Climate change and the permafrost carbon feedback. Nature, 520(7546), 171–179. 10.1038/nature14338 PubMed DOI
Seitz, T. J. , Schütte, U. M. E. , & Drown, D. M. (2021). Soil disturbance affects plant productivity via soil microbial community shifts. Frontiers in Microbiology, 12, 619711. 10.3389/fmicb.2021.619711 PubMed DOI PMC
Shaffer, M. , Borton, M. A. , McGivern, B. B. , Zayed, A. A. , La Rosa, S. L. , Solden, L. M. , Liu, P. , Narrowe, A. B. , Rodríguez‐Ramos, J. , Bolduc, B. , Gazitúa, M. C. , Daly, R. A. , Smith, G. J. , Vik, D. R. , Pope, P. B. , Sullivan, M. B. , Roux, S. , & Wrighton, K. C. (2020). DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Research, 48(16), 8883–8900. 10.1093/nar/gkaa621 PubMed DOI PMC
Shmakova, L. A. , & Rivkina, E. M. (2015). Viable eukaryotes of the phylum Amoebozoa from the Arctic permafrost. Paleontological Journal, 49, 572–577. 10.1134/s003103011506012x DOI
Shur, Y. L. , & Jorgenson, M. T. (2007). Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafrost and Periglacial Processes, 18(1), 7–19. 10.1002/ppp.582 DOI
Siljanen, H. M. P. , Alves, R. J. E. , Ronkainen, J. G. , Lamprecht, R. E. , Bhattarai, H. R. , Bagnoud, A. , Marushchak, M. E. , Martikainen, P. J. , Schleper, C. , & Biasi, C. (2019). Archaeal nitrification is a key driver of high nitrous oxide emissions from arctic peatlands. Soil Biology and Biochemistry, 137, 107539. 10.1016/j.soilbio.2019.107539 DOI
Sniegowski, P. D. , Gerrish, P. J. , & Lenski, R. E. (1997). Evolution of high mutation rates in experimental populations of E. coli. Nature, 387(6634), 703–705. 10.1038/42701 PubMed DOI
Solden, L. M. , Naas, A. E. , Roux, S. , Daly, R. A. , Collins, W. B. , Nicora, C. D. , Purvine, S. O. , Hoyt, D. W. , Schückel, J. , Jørgensen, B. , Willats, W. , Spalinger, D. E. , Firkins, J. L. , Lipton, M. S. , Sullivan, M. B. , Pope, P. B. , & Wrighton, K. C. (2018). Interspecies cross‐feeding orchestrates carbon degradation in the rumen ecosystem. Nature Microbiology, 3(11), 1274–1284. 10.1038/s41564-018-0225-4 PubMed DOI PMC
Spencer, R. G. M. , Mann, P. J. , Dittmar, T. , Eglinton, T. I. , McIntyre, C. , Holmes, R. M. , Zimov, N. , & Stubbins, A. (2015). Detecting the signature of permafrost thaw in Arctic rivers. Geophysical Research Letters, 42(8), 2830–2835. 10.1002/2015GL063498 DOI
Stegen, J. C. , Lin, X. , Konopka, A. E. , & Fredrickson, J. K. (2012). Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal, 6(9), 1653–1664. 10.1038/ismej.2012.22 PubMed DOI PMC
Steven, B. , Léveillé, R. , Pollard, W. H. , & Whyte, L. G. (2006). Microbial ecology and biodiversity in permafrost. Extremophiles, 10(4), 259–267. 10.1007/s00792-006-0506-3 PubMed DOI
Taş, N. , Prestat, E. , McFarland, J. W. , Wickland, K. P. , Knight, R. , Berhe, A. A. , Jorgenson, T. , Waldrop, M. P. , & Jansson, J. K. (2014). Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. The ISME Journal, 8(9), 1904–1919. 10.1038/ismej.2014.36 PubMed DOI PMC
Taş, N. , Prestat, E. , Wang, S. , Wu, Y. , Ulrich, C. , Kneafsey, T. , Tringe, S. G. , Torn, M. S. , Hubbard, S. S. , & Jansson, J. K . (2018). Landscape topography structures the soil microbiome in arctic polygonal tundra. Nature Communications, 9(1), 1–13. 10.1038/s41467-018-03089-z PubMed DOI PMC
Thompson, L. R. , Sanders, J. G. , McDonald, D. , Amir, A. , Ladau, J. , Locey, K. J. , Prill, R. J. , Tripathi, A. , Gibbons, S. M. , Ackermann, G. , Navas‐Molina, J. A. , Janssen, S. , Kopylova, E. , Vázquez‐Baeza, Y. , González, A. , Morton, J. T. , Mirarab, S. , Zech Xu, Z. , & Jiang, L. , … The Earth Microbiome Project Consortium . (2017). A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 551(7681), 457–463. 10.1038/nature24621 PubMed DOI PMC
Tibbett, M. , Sanders, F. , & Cairney, J. (2002). Low‐temperature‐induced changes in trehalose, mannitol and arabitol associated with enhanced tolerance to freezing in ectomycorrhizal basidiomycetes (Hebeloma spp.). Mycorrhiza, 12(5), 249–255. 10.1007/s00572-002-0183-8 PubMed DOI
Timling, I. , & Taylor, D. L. (2012). Peeking through a frosty window: Molecular insights into the ecology of Arctic soil fungi. Fungal Ecology, 5(4), 419–429. 10.1016/j.funeco.2012.01.009 DOI
Tripathi, B. M. , Kim, M. , Kim, Y. , Byun, E. , Yang, J.‐W. , Ahn, J. , & Lee, Y. K. (2018). Variations in bacterial and archaeal communities along depth profiles of Alaskan soil cores. Scientific Reports, 8, 504. 10.1038/s41598-017-18777-x PubMed DOI PMC
Trivedi, P. , Delgado‐Baquerizo, M. , Jeffries, T. C. , Trivedi, C. , Anderson, I. C. , Lai, K. , McNee, M. , Flower, K. , Singh, B. P. , Minkey, D. , & Singh, B. K. (2017). Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environmental Microbiology, 19(8), 3070–3086. 10.1111/1462-2920.13779 PubMed DOI
Tucker, C. M. , Shoemaker, L. G. , Davies, K. F. , Nemergut, D. R. , & Melbourne, B. A. (2016). Differentiating between niche and neutral assembly in metacommunities using null models of β‐diversity. Oikos, 125(6), 778–789. 10.1111/oik.02803 DOI
Tucker, W. , Brigham, L. , & Nelson, F. (2004). A new report on permafrost research needs. Journal of Cold Regions Engineering, 18(4), 123–133. 10.1061/(asce)0887-381x(2004)18:4(123) DOI
Turner, M. G. , Baker, W. L. , Peterson, C. J. , & Peet, R. K. (1998). Factors influencing succession: Lessons from large, infrequent Natural Disturbances. Ecosystems, 1(6), 511–523. 10.1007/s100219900047 DOI
Van Everdingen, R. O. (1998). Multi‐language glossary of permafrost and related ground‐ice terms in Chinese, English, French, German, Icelandic, Italian, Norwegian, polish, Romanian, Russian, Spanish, and Swedish. International Permafrost Association, Terminology Working Group.
Vellend, M. (2010). Conceptual synthesis in community ecology. The Quarterly Review of Biology, 85(2), 183–206. 10.1086/652373 PubMed DOI
Voigt, C. , Marushchak, M. E. , Lamprecht, R. E. , Jackowicz‐Korczyński, M. , Lindgren, A. , Mastepanov, M. , Granlund, L. , Christensen, T. R. , Tahvanainen, T. , Martikainen, P. J. , & Biasi, C. (2017). Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. Proceedings of the National Academy of Sciences, 114(24), 6238–6243. 10.1073/pnas.1702902114 PubMed DOI PMC
Vonk, J. E. , Tank, S. E. , & Walvoord, M. A. (2019). Integrating hydrology and biogeochemistry across frozen landscapes. Nature Communications, 10(1), 5377. 10.1038/s41467-019-13361-5 PubMed DOI PMC
Waldrop, M. P. , & Harden, J. W. (2008). Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest. Global Change Biology, 1–12, 2591–2602. 10.1111/j.1365-2486.2008.01661.x DOI
Wallenstein, M. D. , McMahon, S. , & Schimel, J. (2007). Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiology Ecology, 59(2), 428–435. 10.1111/j.1574-6941.2006.00260.x PubMed DOI
Whalen, E. , Lounsbury, N. , Geyer, K. , Anthony, M. , Morrison, E. , van Diepen, L. , Le Moine, J. , Nadelhoffer, K. , vanden Enden, L. , Simpson, M. , & Frey, S. (2021). Root control of fungal communities and soil carbon in a temperate forest. Soil Biology and Biochemistry., 161, 108390. 10.1016/j.soilbio.2021.108390 DOI
Wild, B. , Gentsch, N. , Čapek, P. , Diáková, K. , Alves, R. J. E. , Bárta, J. , Gittel, A. , Hugelius, G. , Knoltsch, A. , Kuhry, P. , Lashchinskiy, N. , Mikutta, R. , Palmtag, J. , Schleper, C. , Schnecker, J. , Shibistova, O. , Takriti, M. , Torsvik, V. L. , Urich, T. , … Richter, A. (2016). Plant‐derived compounds stimulate the decomposition of organic matter in arctic permafrost soils. Scientific Reports, 6, 25607. PubMed PMC
Wilpiszeski, R. L. , Aufrecht, J. A. , Retterer, S. T. , Sullivan, M. B. , Graham, D. E. , Pierce, E. M. , Zablocki, O. D. , Palumbo, A. V. , & Elias, D. A. (2019). Soil aggregate microbial communities: Towards understanding microbiome interactions at biologically relevant scales. Applied and Environmental Microbiology, 85(14), 1–18. 10.1128/AEM.00324-19 PubMed DOI PMC
Winkel, M. , Mitzscherling, J. , Overduin, P. P. , Horn, F. , Winterfeld, M. , Rijkers, R. , Grigoriev, M. N. , Knoblauch, C. , Mangelsdorf, K. , Wagner, D. , & Liebner, S. (2018). Anaerobic methanotrophic communities thrive in deep submarine permafrost. Scientific Reports, 8(1), 1291. 10.1038/s41598-018-19505-9 PubMed DOI PMC
Woodcroft, B. J. , Singleton, C. M. , Boyd, J. A. , Evans, P. N. , Emerson, J. B. , Zayed, A. A. F. , Hoelzle, R. D. , Lamberton, T. O. , McCalley, C. K. , Hodgkins, S. B. , Wilson, R. M. , Purvine, S. O. , Nicora, C. D. , Li, C. , Frolking, S. , Chanton, J. P. , Crill, P. M. , Saleska, S. R. , Rich, V. I. , & Tyson, G. W. (2018). Genome‐centric view of carbon processing in thawing permafrost. Nature, 560(7716), 49–54. 10.1038/s41586-018-0338-1 PubMed DOI
Yuan, M. M. , Zhang, J. , Xue, K. , Wu, L. , Deng, Y. , Deng, J. , Hale, L. , Zhou, X. , He, Z. , Yang, Y. , Van Nostrand, J. D. , Schuur, E. A. G. , Konstantinidis, K. T. , Penton, C. R. , Cole, J. R. , Tiedje, J. M. , Luo, Y. , & Zhou, J. (2018). Microbial functional diversity covaries with permafrost thaw‐induced environmental heterogeneity in tundra soil. Global Change Biology, 24(1), 297–307. 10.1111/gcb.13820 PubMed DOI
Zhou, J. , & Ning, D. (2017). Stochastic community assembly: Does it matter in microbial ecology? Microbiology and Molecular Biology Reviews, 81(4), 1–32. 10.1128/MMBR.00002-17 PubMed DOI PMC