Li(x)@C(60): Calculations of the encapsulation energetics and thermodynamics

. 2008 Sep ; 9 (9) : 1841-1850. [epub] 20080917

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid19325833

Li@C(60) and Li@C(70) can be prepared and thus, their calculations at higher levels of theory are also of interest. In the report, the computations are carried out on Li@C(60), Li(2)@C(60) and Li(3)@C(60) with the B3LYP density-functional theory treatment in the standard 3-21G and 6-31G* basis sets. The computed energetics suggests that Li(x) @C(60) species may be produced for a few small x values if the Li pressure is enhanced sufficiently. In order to check the suggestion, a deeper computational evaluation of the encapsulation thermodynamics is carried out.

Zobrazit více v PubMed

Hebard RC, Haddon AF, Rosseinsky MJ, Murphy DW, Duclos SJ, Lyons KB, Miller B, Rosamilia JM, Fleming RM, Kortan AR, Glarum SH, Makhija AV, Muller AJ, Eick RH, Zahurak SM, Tycko R, Dabbagh G, Thiel FA. Conducting Films of C60 and C70 by Alkali-Metal Doping. Nature. 1991;350:320–322.

Dunlap BI, Ballester JL, Schmidt PP. Interactions between C60 and Endohedral Alkali Atoms. J. Phys. Chem. 1992;96:9781–9787.

Joslin CG, Yang J, Gray CG, Goldman S, Poll JD. Infrared Rotation and Vibration-Rotation Bands of Endohedral Fullerene Complexes – Absorption Spectrum of Li+@C60 in the Range 1–1000 cm−1. Chem. Phys. Lett. 1993;208:86–92.

Kaplan T, Rasolt M, Karimi M, Mostoller M. Numerical Simulation of He+ and Li+ Collisions with C60. J. Phys. Chem. 1993;97:6124–6126.

Wan ZM, Christian JF, Basir Y, Anderson SL. Collision of Alkali Ions with C60/C70 – Insertion, Thermionic Emission, and Fragmentation. J. Chem. Phys. 1993;99:5858–5870.

Joslin CG, Gray CG, Goldman S, Yang J, Poll JD. Raman Spectra of Endohedral Fullerenes – Li+@C60. Chem. Phys. Lett. 1993;215:144–150.

Slanina Z, Adamowicz L. MNDO Study of Charged Complexes of Dodecahedron-Shaped C20 with Li. J. Mol. Struct. (Theochem) 1993;281:33–37.

Varganov SA, Avramov PV, Ovchinnikov SG. Ab Initio Calculations of Endo- and Exohedral C60 Fullerene Complexes with Li+ Ion and the Endohedral C60 Fullerene Complex with Li2 Dimer. Phys. Solid Stat. 2000;42:388–392.

Slanina Z, Lee S-L. Quantum-Chemical Studies of Superconducting Fullerene Derivatives. Chin. J. Phys. 1996;34:633–637.

Bol A, Stott MJ, Alonso JA. Density Functional Pseudopotential Study of the Endohedral Complex Li2@C60. Physica B. 1997;240:154–166.

Kusch C, Krawez N, Tellgmann R, Winter B, Campbell EEB. Thermal Desorption Spectroscopy of Fullerene Films Containing Endohedral Li@C60. Appl. Phys. A. 1998;66:293–298.

Slanina Z, Uhlík F, Lee S-L, Adamowicz L. Quantum-Chemical Calculations of Model Systems of Interest in Fullerene-Based Superconductivity. J. Low Temp. Phys. 2003;131:1259–1263.

Gromov A, Lassesson A, Jonsson M, Ostrovskii DI, Campbell EEB. IR Spectroscopy Investigation of Purified Endohedral Li@C60 and Li@C70. In: Kamat P, Guldi D, Kadish K, editors. Fullerenes, Vol. 12: The Exciting World of Nanocages and Nanotubes, PV 2002-12. The Electrochemical Society; Pennington: 2002. pp. 621–629.

Gromov A, Krawez N, Lassesson A, Ostrovskii DI, Campbell EEB. Optical Properties of Endohedral Li@C60. Curr. App. Phys. 2002;2:51–55.

Slanina Z, Uhlík F, Chow TJ. Non-Central Location of Li in Li@C60. In: Guldi DM, Kamat PV, D’Souza F, editors. Fullerenes, Vol. 13: Fullerenes and Nanotubes: The Building Blocks of Next Generation Nanodevices, PV 2003-15. The Electrochemical Society; Pennington: 2003. pp. 569–574.

Campbell EEB. Fullerene Collision Reactions. Kluwer Academic Publishers; Dordrecht: 2003.

Popok VN, Azarko II, Gromov AV, Jonsson M, Lassesson A, Campbell EEB. Conductance and EPR Study of the Endohedral Fullerene Li@C60. Sol. Stat. Commun. 2005;133:499–503.

Lassesson A, Hansen K, Jonsson M, Gromov A, Campbell EEB, Boyle M, Pop D, Schulz CP, Hertel IV, Taninaka A, Shinohara H. A Femtosecond Laser Study of the Endohedral Fullerenes Li@C60 and La@C82. Eur. Phys. J. D. 2005;34:205–209.

Slanina Z, Uhlík F, Lee S-L, Adamowicz L, Nagase S. Computations of Endohedral Fullerenes: The Gibbs Energy Treatment. J. Comput. Meth. Sci. Engn. 2006;6:243–250.

Pavanello M, Jalbout AF, Trzaskowski B, Adamowicz L. Fullerene as an Electron Buffer: Charge Transfer in Li@C60. Chem. Phys. Lett. 2007;442:339–343.

Wan TSM, Zhang HW, Nakane T, Xu ZD, Inakuma M, Shinohara H, Kobayashi K, Nagase S. Production, Isolation, and Electronic Properties of Missing Fullerenes: Ca@C72 and Ca@C74. J. Am. Chem. Soc. 1998;120:6806–6807.

Kodama T, Fujii R, Miyake Y, Suzuki S, Nishikawa H, Ikemoto I, Kikuchi K, Achiba Y. 13C NMR Study of Ca@C74: The Cage Structure and the Site-Hopping Motion of a Ca Atom Inside the Cage. Chem. Phys. Lett. 2004;399:94–97.

Haufe O, Hecht M, Grupp A, Mehring M, Jansen M. Isolation and Spectroscopic Characterization of New Endohedral Fullerenes in the Size Gap of C74 to C76. Z. Anorg. Allgem. Chem. 2005;631:126–130.

Reich A, Panthofer M, Modrow H, Wedig U, Jansen M. The Structure of Ba@C74. J. Am. Chem. Soc. 2004;126:14428–14434. PubMed

Becke AD. Density-Functional Thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652.

Lee C, Yang W, Parr RG. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988;37:785–789. PubMed

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Revision C.01. Gaussian, Inc; Wallingford, CT: 2004.

Hehre WJ, Radom L, Schleyer PvR, Pople JA. Ab Initio Molecular Orbital Theory. J. Wiley Inc; New York: 1986.

Logan RA, Cote RE, Kusch P. The Sign of the Quadrupole Interaction Energy in Diatomic Molecules. Phys. Rev. 1952;86:280–287.

Brooks RA, Anderson CH, Ramsey NF. Rotational Magnetic Moments of Diatomic Alkalis. Phys. Rev. Lett. 1963;10:441–443.

Huber KP, Herzberg G. Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules. Van Nostrand Reinhold Company; New York: 1979.

Blanc J, Broyer M, Chevaleyre J, Dugourd P, Kuhling H, Labastie P, Ulbricht M, Wolf JP, Wöste L. High Resolution Spectroscopy of Small Metal Clusters. Z. Phys. D. 1991;19:7–12.

Kawai R, Tombrello JF, Weare JH. Li5 as a Pseudorotating Planar Cluster. Phys. Rev. A. 1994;49:4236–4239. PubMed

Slanina Z, Rudziński JM, Togasi M, Ōsawa E. Quantum-Chemically Supported Vibrational Analysis of Giant Molecules: The C60 and C70 Clusters. J. Mol. Struct. (Theochem) 1989;202:169–176.

Nagase S, Kobayashi K, Akasaka T. Recent Progress in Endohedral Dimetallofullerenes. J. Mol. Struct. (Theochem) 1997;398/399:221–227.

Kobayashi K, Nagase S. Bonding Features in Endohedral Metallofullerenes. Topological Analysis of the Electron Density Distribution. Chem. Phys. Lett. 1999;302:312–316.

Bader RFW. A Quantum Theory of Molecular Structure and its Applications. Chem. Rev. 1991;91:893–928.

Bader RFW. A Bond Path: A Universal Indicator of Bonded Interactions. J. Phys. Chem. A. 1998;102:7314–7323.

Alcock CB, Itkin VP, Horrigan MK. Vapor Pressure Equations for the Metallic Elements: 298 – 2500 K. Can. Metallurg. Quart. 1984;23:309–313.

Slanina Z. Temperature Development of Homo- and Hetero-Clustering in Saturated Vapors. J. Cluster Sci. 2004;15:3–11.

Slanina Z, Uhlík F, Lee S-L, Adamowicz L, Nagase S. Enhancement of Fullerene Stabilities from Excited Electronic States. Comput. Lett. 2005;1:304–312.

Kobayashi K, Nagase S. Structures and Electronic Properties of Endohedral Metallofullerenes; Theory and experiment. In: Akasaka T, Nagase S, editors. Endofullerenes – A New Family of Carbon Clusters. Kluwer Academic Publishers; Dordrecht: 2002. pp. 99–119.

Kobayashi K, Nagase S, Maeda Y, Wakahara T, Akasaka T. La2@C80: Is the Circular Motion of Two La Atoms Controllable by Exohedral Addition? Chem. Phys. Lett. 2003;374:562–566.

Slanina Z, Lee S-L, Uhlík F, Adamowicz L, Nagase S. Computing Relative Stabilities of Metallofullerenes by Gibbs Energy Treatments. Theor. Chem. Acc. 2007;117:315–322.

Gurin VS. Ab Initio Calculation of Endohedral Fullerenes with Copper and Silver Clusters. Fulleren. Nanotub. Carb. Nanostruct. 2005;13(Suppl. 1):3–11.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...