The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31012268
DOI
10.1002/smll.201805046
Knihovny.cz E-zdroje
- Klíčová slova
- gold nanoparticles, lipid membranes, molecular dynamics simulations, nanotoxicity, neutron reflectometry,
- MeSH
- adsorpce MeSH
- biologický transport MeSH
- fosfatidylcholiny chemie metabolismus MeSH
- fosfatidylglyceroly chemie metabolismus MeSH
- hydrofobní a hydrofilní interakce MeSH
- kationty chemie farmakokinetika MeSH
- kovové nanočástice * chemie MeSH
- lipidové dvojvrstvy chemie metabolismus MeSH
- membránové lipidy chemie metabolismus MeSH
- povrchové vlastnosti MeSH
- simulace molekulární dynamiky MeSH
- teplota * MeSH
- zlato chemie farmakokinetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfatidylcholiny MeSH
- fosfatidylglyceroly MeSH
- kationty MeSH
- lipidové dvojvrstvy MeSH
- membránové lipidy MeSH
- zlato MeSH
Understanding the molecular mechanisms governing nanoparticle-membrane interactions is of prime importance for drug delivery and biomedical applications. Neutron reflectometry (NR) experiments are combined with atomistic and coarse-grained molecular dynamics (MD) simulations to study the interaction between cationic gold nanoparticles (AuNPs) and model lipid membranes composed of a mixture of zwitterionic di-stearoyl-phosphatidylcholine (DSPC) and anionic di-stearoyl-phosphatidylglycerol (DSPG). MD simulations show that the interaction between AuNPs and a pure DSPC lipid bilayer is modulated by a free energy barrier. This can be overcome by increasing temperature, which promotes an irreversible AuNP incorporation into the lipid bilayer. NR experiments confirm the encapsulation of the AuNPs within the lipid bilayer at temperatures around 55 °C. In contrast, the AuNP adsorption is weak and impaired by heating for a DSPC-DSPG (3:1) lipid bilayer. These results demonstrate that both the lipid charge and the temperature play pivotal roles in AuNP-membrane interactions. Furthermore, NR experiments indicate that the (negative) DSPG lipids are associated with lipid extraction upon AuNP adsorption, which is confirmed by coarse-grained MD simulations as a lipid-crawling effect driving further AuNP aggregation. Overall, the obtained detailed molecular view of the interaction mechanisms sheds light on AuNP incorporation and membrane destabilization.
Computational Physics Laboratory Tampere University P O Box 692 FI 33014 Tampere Finland
Department of Physics Norwegian University of Science and Technology NO 7491 Trondheim Norway
Department of Physics University of Helsinki P O Box 64 FI 00014 Helsinki Finland
Institut Laue Langevin 71 Avenue des Martyrs 38042 Grenoble France
Laboratoire TIMC IMAG Université Grenoble Alpes Domaine de la Merci 38706 La Tronche Cedex France
Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
Citace poskytuje Crossref.org