Bismuth Oxychloride Nanoplatelets by Breakdown Anodization
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
31032171
PubMed Central
PMC6468268
DOI
10.1002/celc.201801280
PII: CELC201801280
Knihovny.cz E-zdroje
- Klíčová slova
- anodization, bismuth, bismuth oxychloride, nanoplatelets, photocatalysis,
- Publikační typ
- časopisecké články MeSH
Herein, the synthesis of BiOCl nanoplatelets of various dimensions is demonstrated. These materials were prepared by anodic oxidation of Bi ingots in diluted HCl under dielectric breakdown conditions, triggered by a sufficiently high anodic field. Additionally, it is shown that the use of several other common diluted acids (HNO3, H2SO4, lactic acid) resulted in the formation of various different nanostructures. The addition of NH4F to the acidic electrolytes accelerated the growth rate resulting in bismuth-based nanostructures with comparably smaller dimensions and an enormous volume expansion observed during the growth. On the other hand, the addition of lactic acid to the acidic electrolytes decelerated the oxide growth rate. The resulting nanostructures were characterized using SEM, XRD and TEM. BiOCl nanoplatelets received by anodization in 1 M HCl were successfully employed for the photocatalytic decomposition of methylene blue dye and showed a superior performance compared to commercially available BiOCl powder with a similar crystalline structure, confirming its potential as a visible light photocatalyst.
Zobrazit více v PubMed
Masuda H., Fukuda K., Science 1995, 268, 1466–1468. PubMed
Macak J. M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P., Curr. Opin. Solid State Mater. Sci. 2007, 11, 3–18.
Lee K., Mazare A., Schmuki P., Chem. Rev. 2014, 114, 9385–9454. PubMed
Tsuchiya H., Macak J. M., Sieber I., Taveira L., Ghicov A., Sirotna K., Schmuki P., Electrochem. Commun. 2005, 7, 295–298.
Tsuchiya H., Schmuki P., Electrochem. Commun. 2005, 7, 49–52.
Sieber I., Hildebrand H., Friedrich A., Schmuki P., Electrochem. Commun. 2005, 7, 97–100.
Wei W., Macak J. M., Schmuki P., Electrochem. Commun. 2008, 10, 428–432.
Berger S., Faltenbacher J., Bauer S., Schmuki P., Phys. Status Solidi 2008, 2, 102–104.
Tsuchiya H., Macak J. M., Ghicov A., Schmuki P., Small 2006, 2, 888–891. PubMed
Tsuchiya H., Berger S., Macak J. M., Ghicov A., Schmuki P., Electrochem. Commun. 2007, 9, 2397–2402.
Macak J. M., Tsuchiya H., Taveira L., Ghicov A., Schmuki P., J. Biomed. Mater. Res. Part A 2005, 75, 928–933. PubMed
Sopha H., Pohl D., Damm C., Hromadko L., Rellinghaus B., Gebert A., Macak J. M., Mater. Sci. Eng. C 2017, 70, 258–263. PubMed
Güntherschulze A., Betz H., Z. Elektrochem. 1931, 37, 726–734.
Masing L., Young L., Can. J. Chem. 1962, 40, 903–920.
Ammar I. A., Khalil M. W. , Electrochim. Acta 1971, 16, 1601–1612.
Ammar I. A., Khalil M. W. , J. Electroanal. Chem. 1971, 32, 373–386.
Yang M., Shrestha N. K., Hahn R., Schmuki P., Electrochem. Solid-State Lett. 2010, 13, C5-C8.
Lv X., Zhao J., Wang X., Xu X., Bai L., Wang B., J. Solid State Electrochem. 2013, 17, 1215–1219.
Chitrada K. C., Raja K. S., ECS Trans. 2014, 61, 1–12.
Chitrada K. C., Raja K. S., Gakhar R., Chidambaram D., J. Electrochem. Soc. 2015, 162, H380-H391.
Chitrada K. C., Gakhar R., Chidambaram D., Aston E., Raja K. S., J. Electrochem. Soc. 2016, 163, H544-H558.
Ahila M., Dhanalakshmi J., Celina Selvakumari J., Pathinettam Padiyan D., Mater. Res. Express 2016, 3, 105025.
Ahila M., Malligavathy M., Subramanian E., Pathinettam Padiyan D., Solid State Ionics 2016, 298, 23–34.
Ahila M., Malligavathy M., Subramanian E., Pathinettam Padiyan D., Part. Sci. Technol. 2018, 36, 655–569.
Ahila M., Subramanian E., Pathinettam Padiyan D., Ionics 2017, 24, 1827–1839.
Ahila M., Subramanian E., Pathinettam Padiyan D., J. Electroanal. Chem. 2017, 805, 146–158.
Sopha H., Podzemna V., Hromadko L., Macak J. M., Electrochem. Commun. 2017, 84, 6–9.
Zhao J., Lv X., Wang X., Yang J., Yang X., Lu X., Mater. Lett. 2015, 158, 40–44.
Ghicov A., Tsuchiya H., Macak J. M., Schmuki P., Electrochem. Commun. 2005, 7, 505–509.
Raja K. S., Misra M., Paramguru K., Electrochim. Acta 2005, 51, 154–165.
Weidong H., Wei Q., Xiaohong W., Xianbo D., Long C., Zhaohua J., Thin Solid Films 2007, 515, 5362–5365.
Zhang X., Ai Z., Jia F., Zhang L., J. Phys. Chem. C 2008, 112, 747–753.
Cabot A., Marsal A., Arbiol J., Morante J. R., Sens. Actuators B 2004, 99, 74–89.
Michel C. R., Contreras N. L. López, Martínez-Preciado A. H., Sens. Actuators B 2011, 160, 271–277.
Azad A. M., Larose S., Akbar S. A., J. Mater. Sci. 1994, 29, 4135–4151.
Gujar T. P., Shinde V. R., Lokhande C. D., Han S.-H., J. Power Sources 2006, 161, 1479–1485.
So S., Lee K., Schmuki P., J. Am. Chem. Soc. 2012, 134, 11316–11318. PubMed
Hahn R., Macak J. M., Schmuki P., Electrochem. Commun. 2007, 9, 947–952.
Chen F., Liu H., Bagwasi S., Shen X., Zhang J., J. Photochem. Photobiol. A 2010, 215, 76–80.
Sarwan B., Pare B., Acharya A. D., Mater. Sci. Semicond. Process. 2014, 25, 89–97.
Brunauer S., Emmet P. H., Teller E., J. Am. Chem. Soc. 1938, 60, 309–319.