META-pipe cloud setup and execution
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31069047
PubMed Central
PMC6480938
DOI
10.12688/f1000research.13204.3
PII: ELIXIR-2060
Knihovny.cz E-zdroje
- Klíčová slova
- AAI federation, Amazon Web Services, Apache Spark, EGI Federated Cloud, ELIXIR, META-pipe, OpenStack, Portability,
- Publikační typ
- časopisecké články MeSH
META-pipe is a complete service for the analysis of marine metagenomic data. It provides assembly of high-throughput sequence data, functional annotation of predicted genes, and taxonomic profiling. The functional annotation is computationally demanding and is therefore currently run on a high-performance computing cluster in Norway. However, additional compute resources are necessary to open the service to all ELIXIR users. We describe our approach for setting up and executing the functional analysis of META-pipe on additional academic and commercial clouds. Our goal is to provide a powerful analysis service that is easy to use and to maintain. Our design therefore uses a distributed architecture where we combine central servers with multiple distributed backends that execute the computationally intensive jobs. We believe our experiences developing and operating META-pipe provides a useful model for others that plan to provide a portal based data analysis service in ELIXIR and other organizations with geographically distributed compute and storage resources.
CESNET Prague 6 160 00 Czech Republic
CSC IT Center for Science Espoo 02150 Finland
Department of Chemistry UiT The Arctic University of Norway Tromsø Norway
Department of Computer Science UiT The Arctic University of Norway Tromsø Norway
Department of Information Technology UiT The Arctic University of Norway Tromsø Norway
Zobrazit více v PubMed
Robertsen EM, Kahlke T, Raknes IA, et al. : META-pipe - Pipeline Annotation, Analysis and Visualization of Marine Metagenomic Sequence Data. ArXiv160404103 Cs2016. Reference Source
Ondov BD, Bergman NH, Phillippy AM: Interactive metagenomic visualization in a Web browser. BMC Bioinformatics. 2011;12:385. 10.1186/1471-2105-12-385 PubMed DOI PMC
Carver T, Harris SR, Berriman M, et al. : Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012;28(4):464–469. 10.1093/bioinformatics/btr703 PubMed DOI PMC
Goll J, Rusch DB, Tanenbaum DM, et al. : METAREP: JCVI metagenomics reports--an open source tool for high-performance comparative metagenomics. Bioinformatics. 2010;26(20):2631–2632. 10.1093/bioinformatics/btq455 PubMed DOI PMC
Afgan E, Baker D, van den Beek M, et al. : The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016;44(W1):W3–W10. 10.1093/nar/gkw343 PubMed DOI PMC
Kallio MA, Tuimala JT, Hupponen T, et al. : Chipster: user-friendly analysis software for microarray and other high-throughput data. BMC Genomics. 2011;12:507. 10.1186/1471-2164-12-507 PubMed DOI PMC
Amstutz P, Crusoe MR, Tijanić N, et al. : Common Workflow Language, v1.0. 10.6084/m9.figshare.3115156.v2 DOI
Vivian J, Rao AA, Nothaft FA, et al. : Toil enables reproducible, open source, big biomedical data analyses. Nat Biotechnol. 2017;35(4):314–316. 10.1038/nbt.3772 PubMed DOI PMC
Di Tommaso P, Chatzou M, Floden EW, et al. : Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017;35(4):316–319. 10.1038/nbt.3820 PubMed DOI
Schulz WL, Durant TJ, Siddon AJ, et al. : Use of application containers and workflows for genomic data analysis. J Pathol Inform. 2016;7(1):53. 10.4103/2153-3539.197197 PubMed DOI PMC
Agafonov A, Mattila K, Tuan CD, et al. : META-pipe Cloud Setup and Execution (Version Tag: Zenodo-F1000). Zenodo. 2017. 10.5281/zenodo.1053807 PubMed DOI PMC