Right on track? Performance of satellite telemetry in terrestrial wildlife research
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
Wellcome Trust - United Kingdom
PubMed
31071155
PubMed Central
PMC6508664
DOI
10.1371/journal.pone.0216223
PII: PONE-D-18-33139
Knihovny.cz E-resources
- MeSH
- Animals, Wild physiology MeSH
- Ecosystem * MeSH
- Geographic Information Systems * MeSH
- Spacecraft * MeSH
- Environmental Monitoring * MeSH
- Telemetry * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Satellite telemetry is an increasingly utilized technology in wildlife research, and current devices can track individual animal movements at unprecedented spatial and temporal resolutions. However, as we enter the golden age of satellite telemetry, we need an in-depth understanding of the main technological, species-specific and environmental factors that determine the success and failure of satellite tracking devices across species and habitats. Here, we assess the relative influence of such factors on the ability of satellite telemetry units to provide the expected amount and quality of data by analyzing data from over 3,000 devices deployed on 62 terrestrial species in 167 projects worldwide. We evaluate the success rate in obtaining GPS fixes as well as in transferring these fixes to the user and we evaluate failure rates. Average fix success and data transfer rates were high and were generally better predicted by species and unit characteristics, while environmental characteristics influenced the variability of performance. However, 48% of the unit deployments ended prematurely, half of them due to technical failure. Nonetheless, this study shows that the performance of satellite telemetry applications has shown improvements over time, and based on our findings, we provide further recommendations for both users and manufacturers.
Alianza Nacional Para la Conservacion del Jaguar A C Mexico Mexico
Ashoka Trust for Research in Ecology and the Environment New Dehli India
CEFS Université de Toulouse INRA Castanet Tolosan France
Centre for African Conservation Ecology Nelson Mandela University Port Elizabeth South Africa
Centre for Ecological Sciences Indian Institute of Science Bangalore India
Centre National de la Recherche Scientifique Lyon France
Courant Research Centre Evolution of Social Behaviour University of Goettingen Goettingen Germany
D R E Am Italia Pratovecchio Stia Italy
Departamento de Conservación de la Biodiversidad El Colegio de la Frontera Sur Campeche Mexico
Département d'étude du milieu naturel et agricole Service public de Wallonie Gembloux Belgium
Department of Animal and Aquacultural Sciences Norwegian University of Life Sciences Ås Norway
Department of Biodiversity and Molecular Ecology Fondazione Edmund Mach San Michele all'Adige Italy
Department of Biology University of Florence Florence Italy
Department of Bioscience Wildlife Ecology Aarhus University Aarhus Denmark
Department of Conservation and Research Bavarian Forest National Park Grafenau Germany
Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
Department of Fish and Wildlife Conservation Virginia Tech Blacksburg VA United States of America
Department of Migration and Immuno ecology Max Planck Institute for Ornithology Radolfzell Germany
Department of Wildlife Ecology and Management Faculty of Forestry Duzce University Düzce Turkey
Department of Wildlife Ecology and Management Landcare Research Dunedin New Zealand
Department of Zoology and Entomology Rhodes University Grahamstown South Africa
Department of Zoology Facultad de Ciencias de la Universidad de Córdoba Córdoba Spain
Department of Zoology University of Venda Thohoyandou South Africa
Division of Forestry and Forest Resources Norwegian Institute of Bioeconomy Research Ås Norway
Facultad de Ciencias Agrarias Universidad Nacional de Jujuy CONICET San Salvador de Jujuy Argentina
Faro Maro Ecoresearch Departamento de Boquerón Paraguay
Forest Research Institute of Baden Wuerttemberg Freiburg Germany
Freelance consultant Milan Italy
Global Change Research Institute CAS Department of Biodiversity Research Brno Czech Republic
Guyra Paraguay CONACYT Asunción Paraguay
Haute ecole du paysage d'ingenierie et d'architecture de Geneve Genève Switzerland
Humboldt State University Arcata California United States of America
Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
Instituto de Pesquisa e Conservação de Tamanduás no Brasil Parnaíba Piauí Brazil
Instituto Saite Asunción Paraguay
Lamont Doherty Earth Observatory Columbia University Palisades New York United States of America
LECA CNRS Université Savoie Mont Blanc Université Grenoble Alpes Grenoble France
Leibniz Centre for Agricultural Landscape Research Müncheberg Germany
Leibniz Institute for Zoo and Wildlife Research Berlin Germany
Macedonian Ecological Society Skopje Macedonia
Ministery of Environment and Natural Resources of Mexico Mexico City Mexico
Norwegian Institute for Nature Research Trondheim Norway
Office National de la Chasse et de la Faune Sauvage Kourou France
Office National de la Chasse et de la Faune Sauvage Unités Ongulés Sauvages Birieux France
Office of Environment and Heritage Wollongong NSW Australia
Onçafari Pinheiros São Paulo Brazil
Panthera New York NY United States of America
Programa de Conservação Mamíferos do Cerrado Fazenda Limoeiro Cumari Goiás Brazil
Queens College City University of New York New York NY United States of America
Research Institute for Nature and Forest Brussels Belgium
Research Institute of Wildlife Ecology University of Veterinary Medicine Vienna Austria
School of Biology and Environmental Sciences University of Mpumalanga Nelspruit South Africa
School of Environment Natural Resources and Geography Bangor University Bangor United Kingdom
School of Life Sciences University of KwaZulu Natal Durban South Africa
Snow Leopard Trust Seattle United States of America
SUNY College of Environmental Science and Forestry Syracuse NY United States of America
Tatra National Park Zakopane Poland
Texas A and M University College Station Texas United States of America
The Cape Leopard Trust South Africa Cape Town Western Cape South Africa
The Ronin Institute Montclair NJ United States of America
Trent University Peterborough Ontario Canada
UMR EcoFoG Kourou French Guiana
University of Applied Sciences and Arts of Western Switzerland Delémont Switzerland
University of British Columbia Vancouver British Columbia Canada
University of Cape Town Cape Town South Africa
University of Goettingen Goettingen Germany
University of Ljubljana Biotechnical Faculty Department for Forestry Ljubljana Slovenia
University of North Florida Jacksonville FL United States of America
University of Oxford Oxford United Kingdom
University of Potsdam Potsdam Germany
University of Santa Catarina Florianópolis Santa Catarina Brazil
Wellcome Trust DBT India Alliance Hyderabad India
Wildlife Conservation Research Unit Department of Zoology University of Oxford Oxford United Kingdom
Wildlife Conservation Society India Bangalore Karnataka India
Wildlife Conservation Society Mongolia Program Ulaanbaatar Mongolia
Wildlife Ecology and Management University of Freiburg Freiburg Germany
Wildlife Sciences University of Goettingen Goettingen Germany
See more in PubMed
Cagnacci F, Boitani L, Powell RA, Boyce MS. Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philos Trans R Soc Lond B Biol Sci. 2010;365: 2157–2162. 10.1098/rstb.2010.0107 PubMed DOI PMC
Kays R, Crofoot MC, Jetz W, Wikelski M. Terrestrial animal tracking as an eye on life and planet. Science; 2015;348: aaa2478 10.1126/science.aaa2478 PubMed DOI
Thomas B, Holland JD, Minot EO. Wildlife tracking technology options and cost considerations. Wildl Res. 2011;38: 653–663.
Tomkiewicz SM, Fuller MR, Kie JG, Bates KK. Global positioning system and associated technologies in animal behaviour and ecological research. Philos Trans R Soc Lond B Biol Sci. 2010;365: 2163–76. 10.1098/rstb.2010.0090 PubMed DOI PMC
Eriksen A, Wabakken P, Zimmermann B, Andreassen HP, Arnemo JM, Gundersen H, et al. Activity patterns of predator and prey: A simultaneous study of GPS-collared wolves and moose. Anim Behav. Elsevier Ltd; 2011;81: 423–431. 10.1016/j.anbehav.2010.11.011 DOI
Farhadinia MS, Johnson PJ, Hunter LTB, Macdonald DW. Persian leopard predation patterns and kill rates in the Iran-Turkmenistan borderland. J Mammal. 2018;99: 713–723. 10.1093/jmammal/gyy047 DOI
Gottardi E, Tua F, Cargnelutti B, Maublanc ML, Angibault JM, Said S, et al. Use of GPS activity sensors to measure active and inactive behaviours of European roe deer (Capreolus capreolus). Mammalia. 2010;74: 355–362. 10.1515/MAMM.2010.058 DOI
LaPoint S, Gallery P, Wikelski M, Kays R. Animal behavior, cost-based corridor models, and real corridors. Landsc Ecol. 2013;28: 1615–1630. 10.1007/s10980-013-9910-0 DOI
Bridge ES, Thorup K, Bowlin MS, Chilson PB, Diehl RH, Fléron RW, et al. Technology on the move: Recent and forthcoming innovations for tracking migratory birds. Bioscience. Oxford University Press; 2011;61: 689–698. 10.1525/bio.2011.61.9.7 DOI
Chetkiewicz C-LB, Boyce MS. Use of resource selection functions to identify conservation corridors. J Appl Ecol. 2009;46: 1036–1047. 10.1111/j.1365-2664.2009.01686.x DOI
Cristescu B, Stenhouse GB, Boyce MS. Predicting multiple behaviors from GPS radiocollar cluster data. Behav Ecol. Oxford University Press; 2015;26: 452–464. 10.1093/beheco/aru214 DOI
Gurarie E, Andrews RD, Laidre KL. A novel method for identifying behavioural changes in animal movement data. Ecol Lett. 2009;12: 395–408. 10.1111/j.1461-0248.2009.01293.x PubMed DOI
Brown DD, LaPoint S, Kays R, Heidrich W, Kümmeth F, Wikelski M. Accelerometer-informed GPS telemetry: Reducing the trade-off between resolution and longevity. Wildl Soc Bull. 2012;36: 139–146. 10.1002/wsb.111 DOI
Lopez-Lopez P. Individual-based tracking systems in ornithology: welcome to the era of big data. Ardeola. 2016; 103–136.
Correa Ayram CA, Mendoza ME, Etter A, Salicrup DRP. Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Prog Phys Geogr. 2015;40: 7–37. 10.1177/0309133315598713 DOI
Campbell HA, Urbano F, Davidson S, Dettki H, Cagnacci F. A plea for standards in reporting data collected by animal-borne electronic devices. Anim Biotelemetry. BioMed Central; 2016;4: 1 10.1186/s40317-015-0096-x DOI
Bastille-Rousseau G, Potts JR, Yackulic CB, Frair JL, Ellington EH, Blake S. Flexible characterization of animal movement pattern using net squared displacement and a latent state model. Mov Ecol. Movement Ecology; 2016;4: 15 10.1186/s40462-016-0080-y PubMed DOI PMC
Edelhoff H, Signer J, Balkenhol N. Path segmentation for beginners: an overview of current methods for detecting changes in animal movement data. Mov Ecol. Movement Ecology; 2015;4: 21 10.1186/s40462-016-0086-5 PubMed DOI PMC
Signer J, Fieberg J, Avgar T. Estimating utilization distributions from fitted step-selection functions. Ecosphere. 2017;8: e01771 10.1002/ecs2.1771 DOI
Johnson CJ, Heard DC, Parker KL. Expectations and realities of GPS animal location collars: results of three years in the field. Wildlife Biol. 2002;8: 153–159.
Kaczensky P, Ito TY, Walzer C. Satellite telemetry of large mammals in Mongolia: What expectations should we have for collar function? Wildl Biol Pract. 2010;6: 108–126. 10.2461/wbp.2010.6.9 PubMed DOI PMC
Matthews A, Ruykys L, Ellis B, Fitzgibbon S, Lunney D, Crowther MS, et al. The success of GPS collar deployments on mammals in Australia. Aust Mammal. 2013;35: 65–83. 10.1071/AM12021 DOI
Ossi F, Urbano F, Cagnacci F. Biologging and Remote-Sensing of Behavior In: Choe JC, editor. Encyclopedia of Animal Behavior (Second Edition). Second Edi Oxford, UK: Elsevier Academic Press; 2019. pp. 429–446. 10.1016/B978-0-12-809633-8.90089-X DOI
D’Eon RG, Delparte D. Effects of radio-collar position and orientation on GPS radio-collar performance, and the implications of PDOP in data screening. J Appl Ecol. 2005;42: 383–388. 10.1111/j.1365-2664.2005.01010.x DOI
Heard DC, Ciarniello LM, Seip DR. Grizzly bear behavior and global positioning system collar fix rates. J Wildl Manage. 2008;72: 596–602. 10.2193/2007-175 DOI
McGregor HW, Legge SM, Jones ME, Johnson CN. GPS collars are more efficient when collecting high-frequency data. Aust Mammal. 2016;38: 237–240. 10.1071/AM15034 DOI
Moriarty KM, Epps CW. Retained satellite information influences performance of GPS devices in a forested ecosystem. Wildl Soc Bull. 2015;39: 349–357. 10.1002/wsb.524 DOI
Mattisson J, Andrén H, Persson J, Segerström P. Effects of species behavior on global positioning system collar fix rates. J Wildl Manage. 2010;74: 557–563. 10.2193/2009-157 DOI
Hansen MC, Riggs R a. Accuracy, precision, and observation rates of global positioning system telemetry collars. J Wildl Manage. 2008;72: 518–526. 10.2193/2006-493 DOI
DeCesare AJ, Squires JR, Kolbe JA. Effect of forest canopy on GPS-based movement data. Wildl Soc Bull. 2005;33: 935–941. 10.2193/0091-7648(2005)33[935:EOFCOG]2.0.CO;2 DOI
Phillips KA, Elvey CR, Abercrombie CL. Applying GPS to the study of primate ecology: A useful tool? Am J Primatol. 1998;46: 167–172. 10.1002/(SICI)1098-2345(1998)46:2<167::AID-AJP6>3.0.CO;2-U PubMed DOI
Grewal M, Weill L, Andrews A. Global Positioning Systems, Inertial Navigation and Integration. Second. Wiley-Interscience. John Wiley; 2007. 10.1002/0471200719 DOI
Lewis JS, Rachlow JL, Garton EO, Vierling LA. Effects of habitat on GPS collar performance: using data screening to reduce location error. J Appl Ecol. 2007;44: 663–671. 10.1111/j.1365-2664.2007.01286.x DOI
Adams AL, Dickinson KJM, Robertson BC, van Heezik Y. An evaluation of the accuracy and performance of lightweight GPS collars in a suburban environment. PLoS One. 2013;8: e68496 10.1371/journal.pone.0068496 PubMed DOI PMC
Frair JL, Fieberg J, Hebblewhite M, Cagnacci F, DeCesare NJ, Pedrotti L. Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Philos Trans R Soc Lond B Biol Sci. 2010;365: 2187–2200. 10.1098/rstb.2010.0084 PubMed DOI PMC
Cabrera JA, Molina E, González T, Armenteras D. Does Plan B work? Home range estimations from stored on board and transmitted data sets produced by GPS-telemetry in the Colombian Amazon. Int J Trop Biol. 2016;64: 1441–1450. PubMed
Gau RJ, Mulders R, Ciarniello LM, Heard DC, Chetkiewicz C-LB, Boyce MS, et al. Uncontrolled field performance of Televilt GPS-Simplex TM collars on grizzly bears in western and northern Canada. Wildl Soc Bull. 2004;32: 693–701. 10.2193/0091-7648(2004)032[0693:UFPOTG]2.0.CO;2 DOI
Laver PN, Powell RA, Alexander KA. Screening GPS telemetry data for locations having unacceptable error. Ecol Inform. Elsevier B.V.; 2015;27: 11–20. 10.1016/j.ecoinf.2015.02.001 DOI
Nielson RM, Manly BFJ, Mcdonald LL, Sawyer H, Mcdonald TL. Estimating habitat selection when GPS fix success is less than 100%. Ecology. 2009;90: 2956–2962. 10.1890/08-1562.1 PubMed DOI
Campbell HA, Beyer HL, Dennis TE, Dwyer RG, Forester JD, Fukuda Y, et al. Finding our way: On the sharing and reuse of animal telemetry data in Australasia. Sci Total Environ. 2015;534: 79–84. 10.1016/j.scitotenv.2015.01.089 PubMed DOI
Al-Rabbany A. Introduction to GPS: the Global Positioning System. Norwood, Massachusetts, USA: Artech House, Inc.; 2002.
Cain JW, Krausman PR, Jansen BD, Morgart JR. Influence of topography and GPS fix interval on GPS collar performance. Wildl Soc Bull. 2005;33: 926–934. 10.2193/0091-7648(2005)33[926:IOTAGF]2.0.CO;2 DOI
Macedo L, Salvador CH, Moschen N, Monjeau A. Atlantic forest mammals cannot find cellphone coverage. Biol Conserv. 2018; 201–208. 10.1016/j.biocon.2018.02.018 DOI
Sager-Fradkin KA, Jenkins KJ, Hoffman RA, Happe PJ, Beecham JJ, Wright RG. Fix success and accuracy of Global Positioning System collars in old-growth temperate coniferous forests. J Wildl Manage. 2007;71: 1298–1308. 10.2193/2006-367 DOI
R Development Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2015. Available: http://www.r-project.org
Schmid M, Wickler F, Maloney KO, Mitchell R, Fenske N, Mayr A. Boosted Beta Regression. PLoS One. 2013;8 10.1371/journal.pone.0061623 PubMed DOI PMC
Mayr A, Fenske N, Hofner B, Kneib T. Generalized additive models for location, scale and shape for high dimensional data—a flexible approach based on boosting. J R Stat Soc. 2012;61: 403–427. 10.1111/j.1467-9876.2011.01033.x DOI
Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and shape. Appl Stat. 2005;54: 507–554.
Cribari-Neto F, Zeileis A. Beta regression in R. J Stat Softw. 2010;34: 24 http://www.jstatsoft.org/v34/i02/
Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974;19: 716–723. 10.1109/TAC.1974.1100705 DOI
Hofner B, Mayr A, Schmid M. gamboostLSS: Boosting methods for GAMLSS models, R package version 1.2–2. [Internet]. 2016. Available: http://cran.r-project.org/package=gamboostLSS
Hofner B, Mayr A, Schmid M. gamboostLSS: An R package for model building and variable selection in the GAMLSS framework. J Stat Softw. 2016;74: 1–31. 10.18637/jss.v074.i01 DOI
Hofner B, Mayr A, Robinzonov N, Schmid M. Model-based boosting in R: A hands-on tutorial using the R package mboost. Comput Stat. 2014;29: 3–35. 10.1007/s00180-012-0382-5 DOI
Couriot O, Hewison AJM, Saïd S, Cagnacci F, Chamaillé-Jammes S, Linnell JDC, et al. Truly sedentary? The multi-range tactic as a response to resource heterogeneity and unpredictability in a large herbivore. Oecologia. Springer Berlin Heidelberg; 2018;187: 47–60. 10.1007/s00442-018-4131-5 PubMed DOI
Cagnacci F, Focardi S, Ghisla A, van Moorter B, Merrill EH, Gurarie E, et al. How many routes lead to migration? Comparison of methods to assess and characterize migratory movements. Börger L, editor. J Anim Ecol. Wiley/Blackwell (10.1111); 2016;85: 54–68. 10.1111/1365-2656.12449 PubMed DOI
Tucker MA, Böhning-Gaese K, Fagan WF, Fryxell JM, Van Moorter B, Alberts SC, et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science; 2018;359: 466–469. 10.1126/science.aam9712 PubMed DOI
NCO. Space segment. In: https://www.GPS.gov [Internet]. 2016 [cited 30 Jan 2017]. Available: http://www.gps.gov/systems/gps/space/
Rouco C, Norbury G. Short-term influence of snow cover on movements and habitat use by brushtail possums (Trichosurus vulpecula). N Z J Ecol. New Zealand Ecological Society; 2015;39: 303–308. 10.2307/26198727 DOI
Hebblewhite M, Percy M, Merrill EH. Are all global positioning system collars created equal? Correcting habitat-induced bias using three brands in the central Canadian Rockies. J Wildl Manage. 2007;71: 2026–2033. 10.2193/2006-238 DOI
Cushman SA, Lewis JS. Movement behavior explains genetic differentiation in American black bears. Landsc Ecol. 2010;25: 1613–1625. 10.1007/s10980-010-9534-6 DOI
Joly K, Craig T, Sorum MS, Mcmillan JS, Spindler MA. Moose movement patterns in the upper Koyukuk River drainage, nothcentral Alaska. Alces. 2015;51: 87–96.
Jung TS, Kuba K. Performance of GPS collars on free-ranging bison (Bison bison) in north-western Canada. Wildl Res. 2015;42: 315–323.
Sawyer H, Kauffman MJ, Nielson RM, Horne JS. Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecol Appl. 2009;19: 2016–2025. Available: http://www.esajournals.org/doi/abs/10.1890/08-2034.1 PubMed DOI
Calenge C, Dray S, Royer-Carenzi M. The concept of animals’ trajectories from a data analysis perspective. Ecol Inform. Elsevier B.V.; 2009;4: 34–41. 10.1016/j.ecoinf.2008.10.002 DOI
Noonan MJ, Tucker MA, Fleming CH, Akre T, Alberts SC, Ali AH, et al. A comprehensive analysis of autocorrelation and bias in home range estimation. Ecol Monogr. 2019;00: e01344 10.1002/ecm.1344 DOI
Cai C, Gao Y. Precise Point Positioning using combined GPS and GLONASS observations. J Glob Position Syst. 2007;6: 13–22.
Hubel TY, Myatt JP, Jordan NR, Dewhirst OP, McNutt JW, Wilson AM. Additive opportunistic capture explains group hunting benefits in African wild dogs. Nat Commun. Nature Publishing Group; 2016;7: 11033 10.1038/ncomms11033 PubMed DOI PMC
Wilson AM, Lowe JC, Roskilly K, Hudson PE, Golabek KA, McNutt JW. Locomotion dynamics of hunting in wild cheetahs. Nature. Nature Research; 2013;498: 185–189. 10.1038/nature12295 PubMed DOI
Bidder OR, Walker JS, Jones MW, Holton MD, Urge P, Scantlebury DM, et al. Step by step: reconstruction of terrestrial animal movement paths by dead-reckoning. Mov Ecol. 2015;3: 23 10.1186/s40462-015-0055-4 PubMed DOI PMC