Solid-Phase Synthesis of Phosphorothioate/Phosphonothioate and Phosphoramidate/Phosphonamidate Oligonucleotides
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-12703S
Grantová Agentura České Republiky
PubMed
31096640
PubMed Central
PMC6571627
DOI
10.3390/molecules24101872
PII: molecules24101872
Knihovny.cz E-zdroje
- Klíčová slova
- H-phosphinate, H-phosphonate, oligonucleotide, phosphonamidate, phosphonate, phosphonothioate, phosphoramidate, phosphoramidite, phosphorothioate,
- MeSH
- amidy chemie MeSH
- dimerizace MeSH
- fosfáty chemie MeSH
- fosforothioátové oligonukleotidy chemická syntéza MeSH
- kyseliny fosforečné chemie MeSH
- molekulární struktura MeSH
- oligonukleotidy chemická syntéza chemie MeSH
- techniky syntézy na pevné fázi * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amidy MeSH
- fosfáty MeSH
- fosforothioátové oligonukleotidy MeSH
- kyseliny fosforečné MeSH
- oligonukleotidy MeSH
- phosphoramidic acid MeSH Prohlížeč
- phosphorodithioic acid MeSH Prohlížeč
We have developed a robust solid-phase protocol which allowed the synthesis of chimeric oligonucleotides modified with phosphodiester and O-methylphosphonate linkages as well as their P-S and P-N variants. The novel O-methylphosphonate-derived modifications were obtained by oxidation, sulfurization, and amidation of the O-methyl-(H)-phosphinate internucleotide linkage introduced into the oligonucleotide chain by H-phosphonate chemistry using nucleoside-O-methyl-(H)-phosphinates as monomers. The H-phosphonate coupling followed by oxidation after each cycle enabled us to successfully combine H-phosphonate and phosphoramidite chemistries to synthesize diversely modified oligonucleotide strands.
Zobrazit více v PubMed
Šípová H., Špringer T., Rejman D., Šimák O., Petrová M., Novák P., Rosenbergová Š., Páv O., Liboska R., Barvík I., et al. 5′-O-Methylphosphonate nucleic acids—new modified DNAs that increase the Escherichia coli RNase H cleavage rate of hybrid duplexes. Nucleic Acids Res. 2014;42:5378–5389. doi: 10.1093/nar/gku125. PubMed DOI PMC
Kostov O., Páv O., Buděšínský M., Liboska R., Šimák O., Petrová M., Novák P., Rosenberg I. 4-Toluenesulfonyloxymethyl-(H)-phosphinate: A reagent for the introduction of O- and S-Methyl-(H)-phosphinate Moieties. Org. Lett. 2016;18:2704–2707. PubMed
Kostov O., Páv O., Rosenberg I. Nucleoside-O-methyl-(H)-phosphinates: Novel monomers for the synthesis of methylphosphonate oligonucleotides using H-phosphonate chemistry. Curr. Protoc. Nucleic Acid Chem. 2017;70:4.76.1–4.76.22. PubMed
Garegg P.J., Lindh I., Regberg T., Stawinski J., Strömberg R., Henrichson C. Nucleoside H-phosphonates. III. Chemical synthesis of oligodeoxyribonucleotides by the hydrogenphosphonate approach. Tetrahedron Lett. 1986;27:4051–4054. doi: 10.1016/S0040-4039(00)84908-4. DOI
Froehler B.C., Ng P.G., Matteucci M.D. Synthesis of DNA via deoxynudeoside H-phosphonate intermediates. Nucleic Acids Res. 1986;14:5399–5407. doi: 10.1093/nar/14.13.5399. PubMed DOI PMC
Liu C., Cozens C., Jaziri F., Rozenski J., Maréchal A., Dumbre S., Pezo V., Marlière P., Pinheiro V.B., Groaz E., et al. Phosphonomethyl oligonucleotides as backbone-modified artificial genetic polymers. J. Am. Chem. Soc. 2018;140:6690–6699. doi: 10.1021/jacs.8b03447. PubMed DOI
Garegg P.J., Regberg T., Stawinski J., Stromberg R. Nucleoside phosphonates: Part 7. Studies on the oxidation of nucleoside phosphonate esters. J. Chem. Soc. Perkin Trans. 1. 1987:1269–1273. doi: 10.1039/P19870001269. DOI
Cullis P.M., Lee M. The mechanism of iodine-water oxidation of H-phosphonate diesters. J. Chem. Soc. Chem. Commun. 1992:1207–1208. doi: 10.1039/C39920001207. DOI
Wallin R., Kalek M., Bartoszewicz A., Thelin M., Stawinski J. On the sulfurization of H-phosphonate diesters and phosphite triesters using elemental sulfur. PhosphorusSulfurSilicon Relat. Elem. 2009;184:908–916. doi: 10.1080/10426500802715619. DOI
Mohe N.U., Padiya K.J., Salunkhe M.M. An efficient oxidizing reagent for the synthesis of mixed backbone oligonucleotides via the H-phosphonate approach. Bioorg. Med. Chem. 2003;11:1419–1431. doi: 10.1016/S0968-0896(02)00615-6. PubMed DOI
Nilsson J., Stawinski J. Oxidative coupling of H-phosphonate and H-phosphonothioate diesters. Iodine as a reagent and a catalyst. Collect. Symp. Ser. 2002;5:87–92.
Nilsson J., Stawinski J. Controlling stereochemistry during oxidative coupling. Preparation of Rp or Sp phosphoramidates from one P-chiral precursor. Chem. Commun. 2004:2566–2567. doi: 10.1039/b411451e. PubMed DOI
Stawinski J., Stromberg R. Di- and oligonucleotide synthesis using H-phosphonate chemistry. Methods Mol. Biol. (CliftonN.J.) 2005;288:81–100. doi: 10.1002/chin.200541254. PubMed DOI
Maier M.A., Guzaev A.P., Manoharan M. Synthesis of chimeric oligonucleotides containing phosphodiester, phosphorothioate, and phosphoramidate linkages. Org. Lett. 2000;2:1819–1822. doi: 10.1021/ol005842h. PubMed DOI
Bartoszewicz A., Kalek M., Stawinski J. The Case for the intermediacy of monomeric metaphosphate analogues during oxidation of H-phosphonothioate, H-phosphonodithioate, and H-phosphonoselenoate monoesters: Mechanistic and synthetic studies. J. Org. Chem. 2008;73:5029–5038. doi: 10.1021/jo8006072. PubMed DOI
Le Corre S.S., Berchel M., Couthon-Gourvès H., Haelters J.-P., Jaffrès P.-A. Atherton–Todd reaction: Mechanism, scope and applications. Beilstein J. Org. Chem. 2014;10:1166–1196. doi: 10.3762/bjoc.10.117. PubMed DOI PMC
Letsinger R.L., Singman C.N., Histand G., Salunkhe M. Cationic oligonucleotides. J. Am. Chem. Soc. 1988;110:4470–4471. doi: 10.1021/ja00221a089. DOI
Jung P.M., Histand G., Letsinger R.L. Hybridization of alternating cationic/anionic oligonucleotides to RNA segments. Nucleosides Nucleotides. 1994;13:1597–1605. doi: 10.1080/15257779408012174. DOI
Paul S., Roy S., Monfregola L., Shang S., Shoemaker R., Caruthers M.H. Oxidative substitution of boranephosphonate diesters as a route to post-synthetically modified DNA. J. Am. Chem. Soc. 2015;137:3253–3264. doi: 10.1021/ja511145h. PubMed DOI
Brill W.K.D. Thioalkylation of nucleoside-H-phosphonates and its application to solid phase synthesis of oligonucleotides. Tetrahedron Lett. 1995;36:703–706. doi: 10.1016/0040-4039(94)02380-T. DOI
Reese C.B., Yan H. Solution phase synthesis of ISIS 2922 (Vitravene) by the modified H-phosphonate approach. J. Chem. Soc. Perkin Trans. 1. 2002:2619–2633. doi: 10.1039/b208802a. DOI
Alefelder S., Patel B.K., Eckstein F. Incorporation of terminal phosphorothioates into oligonucleotides. Nucleic Acids Res. 1998;26:4983–4988. doi: 10.1093/nar/26.21.4983. PubMed DOI PMC
Andrus A., Efcavitch J.W., McBride L.J., Giusti B. Novel activating and capping reagents for improved hydrogen-phosphonate DNA synthesis. Tetrahedron Lett. 1988;29:861–864. doi: 10.1016/S0040-4039(00)82467-3. DOI
Ugi I., Jacob P., Landgraf B., Ruppf C., Lemmen P., Verfürth U. Phosphite oxidation and the preparation of five-membered cyclic phosphorylating reagents via the phosphites. Nucleosides Nucleotides. 1988;7:605–608. doi: 10.1080/07328318808056294. DOI
Reynolds M.A., Hogrefe R.I., Jaeger J.A., Schwartz D.A., Riley T.A., Marvin W.B., Daily W.J., Vaghefi M.M., Beck T.A., Knowles S.K., et al. Synthesis and thermodynamics of oligonucleotides containing chirally pure R P methylphosphonate linkages. Nucleic Acids Res. 1996;24:4584–4591. doi: 10.1093/nar/24.22.4584. PubMed DOI PMC
Dellinger D.J., Sheehan D.M., Christensen N.K., Lindberg J.G., Caruthers M.H. Solid-phase chemical synthesis of phosphonoacetate and thiophosphonoacetate oligodeoxynucleotides. J. Am. Chem. Soc. 2003;125:940–950. doi: 10.1021/ja027983f. PubMed DOI
Glen Research Unicap Phosphoramidite, An Alternative to Acetic Anhydride Capping. [(accessed on 9 October 2018)]; Available online: http://www.glenresearch.com/GlenReports/GR17-13.html.
Vlaho D., Damha M.J. Synthesis of chimeric oligonucleotides having modified internucleotide linkages via an automated H-phosphonate/phosphoramidite approach. Curr. Protoc. Nucleic Acid Chem. 2018;73:e53. doi: 10.1002/cpnc.53. PubMed DOI