SureTypeSC-a Random Forest and Gaussian mixture predictor of high confidence genotypes in single-cell data
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31116387
DOI
10.1093/bioinformatics/btz412
PII: 5497252
Knihovny.cz E-zdroje
- MeSH
- Bayesova věta MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus * MeSH
- normální rozdělení MeSH
- sekvenování celého genomu MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
MOTIVATION: Accurate genotyping of DNA from a single cell is required for applications such as de novo mutation detection, linkage analysis and lineage tracing. However, achieving high precision genotyping in the single-cell environment is challenging due to the errors caused by whole-genome amplification. Two factors make genotyping from single cells using single nucleotide polymorphism (SNP) arrays challenging. The lack of a comprehensive single-cell dataset with a reference genotype and the absence of genotyping tools specifically designed to detect noise from the whole-genome amplification step. Algorithms designed for bulk DNA genotyping cause significant data loss when used for single-cell applications. RESULTS: In this study, we have created a resource of 28.7 million SNPs, typed at high confidence from whole-genome amplified DNA from single cells using the Illumina SNP bead array technology. The resource is generated from 104 single cells from two cell lines that are available from the Coriell repository. We used mother-father-proband (trio) information from multiple technical replicates of bulk DNA to establish a high quality reference genotype for the two cell lines on the SNP array. This enabled us to develop SureTypeSC-a two-stage machine learning algorithm that filters a substantial part of the noise, thereby retaining the majority of the high quality SNPs. SureTypeSC also provides a simple statistical output to show the confidence of a particular single-cell genotype using Bayesian statistics. AVAILABILITY AND IMPLEMENTATION: The implementation of SureTypeSC in Python and sample data are available in the GitHub repository: https://github.com/puko818/SureTypeSC. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Faculty of Information Technology Brno University of Technology Brno Czech Republic
Genome Damage and Stability Centre School of Life Sciences University of Sussex Brighton UK
Citace poskytuje Crossref.org