Complex Characterization and Behavior of Waste Fired Brick Powder-Portland Cement System
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-18-07332S
Grantová Agentura České Republiky
AR/14/1
Ministry of Science, Technology and Productive Innovation of the Argentine Republic
PubMed
31117225
PubMed Central
PMC6566243
DOI
10.3390/ma12101650
PII: ma12101650
Knihovny.cz E-zdroje
- Klíčová slova
- analysis of hydrated products, heat of hydration, physical and chemical parameters, pozzolan, red ceramic waste,
- Publikační typ
- časopisecké články MeSH
Two waste fired brick powders coming from brick factories located in Argentine and Czech Republic were examined as alternative mineral admixtures for the production of blended cements. In pastes composition, local Portland cements (Argentine and Czech) were substituted with 8-40%, by mass, with powdered ceramic waste. For the ceramic waste-Portland cement system, workability, the heat released, pozzolanity, specific density, compressive strength, hydrated phases, porosity, and pore size distribution were tested. The relevance of the dilution effect, filler effect, and pozzolanic activity was analyzed to describe the general behavior of the pozzolan/cement system. The properties and performance of cement blends made with finely ground brick powder depended on the composition of ceramic waste and its reactivity, the plain cement used, and the replacement level. Results showed that the initial mini-slump was not affected by a low ceramic waste replacement (8% and 16%), and then it was decreased with an increase in the ceramic waste content. Brick powder behaved as a filler at early ages, but when the hydration proceeded, its pozzolanic activity consumed partially the calcium hydroxide and promoted the formation of hydrated calcium aluminates depending on the age and present carbonates. Finally, blended cements with fired brick powder had low compressive strength at early ages but comparable strength-class at later age.
Zobrazit více v PubMed
Uddin F., Shaikh A., Nguyen H.L. Properties of concrete containing recycled construction and demolition wastes as coarse aggregates. J. Sust. Cem.-Based Mater. 2013;2:204–217. doi: 10.1080/21650373.2013.833861. DOI
Kou S.C., Poon S.C. Effects of different kinds of recycled fine aggregate on properties of rendering mortar. J. Sust. Cem.-Based Mater. 2013;2:43–57. doi: 10.1080/21650373.2013.766400. DOI
Ben Said S.E., Khay S.E., Louilizi A. Experimental investigation of PCC incorporating RAP. Int. J. Concr. Struct. Mater. 2018;12 doi: 10.1186/s40069-018-0227-x. DOI
Akhtar A., Sarmah A.K. Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J. Clean. Prod. 2018;186:262–281. doi: 10.1016/j.jclepro.2018.03.085. DOI
Monteiro P.J.M., Miller S.A., Horwath A. Towards sustainable concrete. Nat. Mater. 2017;16:698–699. doi: 10.1038/nmat4930. PubMed DOI
Yu L., Zhou S., Deng W. Pozzolanic activity of volcanic rocks from Southern Jiangxi Province, China. J. Sust. Cem.-Based Mater. 2016;5:176–198. doi: 10.1080/21650373.2015.1010660. DOI
Tan K.H., Du H. Sandless concrete with fly ash as supplementary cementing material. J. Sust. Cem.-Based Mater. 2013;2:238–249. doi: 10.1080/21650373.2013.827994. DOI
Záleská M., Pavlíková M., Pavlík Z., Jankovský O., Pokorný J., Tydlitát V., Svora P., Černý R. Physical and chemical characterization of technogenic pozzolans for the application in blended cements. Constr. Build. Mater. 2018;160:106–116. doi: 10.1016/j.conbuildmat.2017.11.021. DOI
Hussin M.W., Khankhaje E. Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Constr. Build. Mater. 2016;116:15–24. doi: 10.1016/j.conbuildmat.2016.04.080. DOI
Kwan A.K.H., Chen J.J. Adding fly ash microsphere to improve packing density, flowability and strength of cement paste. Powder Technol. 2013;234:19–25. doi: 10.1016/j.powtec.2012.09.016. DOI
Chen J.J., Ng P.L., Li L.G., Kwan A.K.H. Use of superfine zeolite in conjunction with silica fume - Effects on rheology and strength of cementitious paste. Powder Technol. 2018;328:75–83. doi: 10.1016/j.powtec.2018.01.008. DOI
Chen J.J., Ng P.L., Kwan A.K.H., Li L.G. Lowering cement content in mortar by adding superfine zeolite as cement replacement and optimizing mixture proportions. J. Clean. Prod. 2019;210:66–76. doi: 10.1016/j.jclepro.2018.11.007. DOI
Pavlík Z., Fořt J., Záleská M., Pavlíková M., Trník A., Medved I., Keppert M., Koutsoukos P.G., Černý R. Energy-efficient thermal treatment of sewage sludge for its application in blended cements. J. Clean. Prod. 2016;112:409–419. doi: 10.1016/j.jclepro.2015.09.072. DOI
Cordeiro G.C., Sales C.P. Influence of calcining temperature on the pozzolanic characteristics of elephant grass ash. Cem. Concr. Compos. 2016;73:98–104. doi: 10.1016/j.cemconcomp.2016.07.008. DOI
Pavlíková M., Zemanová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Sedmidubský D., Pavlík Z. Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Manage. 2018;80:89–100. doi: 10.1016/j.wasman.2018.09.004. PubMed DOI
Jankovský O., Pavlíková M., Sedmidubský D., Bouša D., Lojka M., Pokorný J., Záleská M., Pavlík Z. Study on pozzolana activity of wheat straw ash as potential admixture for blended cements. Ceram.-Silikáty. 2017;61:327–339. doi: 10.13168/cs.2017.0032. DOI
Ting L., Qiang W., Shiyu Z. Effects of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes. Powder Technol. 2019;345:54–63. doi: 10.1016/j.powtec.2018.12.094. DOI
Aliabdo A.A., Abd Elmoaty A.E.M., Aboshama A.Y. Utilization of waste glass powder in the production of cement and concrete. Constr. Build. Mater. 2016;124:866–877. doi: 10.1016/j.conbuildmat.2016.08.016. DOI
Liu S., Zhang T., Guo Y., Wei J., Yu Q. Effects of SCMs particles on the compressive strength of micro-structurally designed cement paste: Inherent characteristic effect, particle size refinement effect, and hydration effect. Powder Technol. 2018;330:1–11. doi: 10.1016/j.powtec.2018.01.087. DOI
Senhadji Y., Escadeillas G., Mouli M., Khelafi H., Benosman Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technol. 2014;254:314–323. doi: 10.1016/j.powtec.2014.01.046. DOI
Xiao J., Ma Z., Sui T., Akbarnezhad A., Duan Z. Mechanical properties of concrete mixed with recycled powder produced from construction and demolition waste. J. Clean. Prod. 2018;188:720–731. doi: 10.1016/j.jclepro.2018.03.277. DOI
Cheng Y.H., Huang F., Liu R., Hou J.-L., Li G.-L. Test research on effects of waste ceramic polishing powder on the permeability resistance of concrete. Mater. Struct. 2016;49:729–738. doi: 10.1617/s11527-015-0533-6. DOI
Silva J., de Brito J., Veiga R. Fine ceramics replacing cement in mortars Partial replacement of cement with fine ceramics in rendering mortars. Mater. Struct. 2008;41:1333–1344. doi: 10.1617/s11527-007-9332-z. DOI
Awoyera P.O., Ndambuki J.M., Akinmusuru J.O., Omole D.O. Characterization of ceramic waste aggregate concrete. HBRC J. 2018;14:282–2897. doi: 10.1016/j.hbrcj.2016.11.003. DOI
Siddigue S., Shrivastava S., Chaudhary C., Gupta T. Strength and impact resistance properties of concrete containing fine bone China ceramic aggregate. Constr. Build. Mater. 2018;169:289–298. doi: 10.1016/j.conbuildmat.2018.02.213. DOI
European Commission Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, BREF-0807, 200. [(accessed on 11 June 2018)]; Available online: http://eippcb.jrc.ec.europa.eu/reference/BREF/cer_bref_0807.pdf.
Nirmala G., Viruthagiri G. FT-IR characterization of articulated ceramic bricks with wastes from ceramic industries. Spectrochim. Acta A. 2014;126:129–134. doi: 10.1016/j.saa.2014.01.143. PubMed DOI
Baronio G., Binda L. Study of the pozzolanicity of some bricks and clays. Constr. Build. Mat. 1997;11:41–46. doi: 10.1016/S0950-0618(96)00032-3. DOI
Pereira-de-Oliveira L.A., Castro-Gomes J.P., Santos P.M.S. The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Constr. Build. Mater. 2012;31:197–203. doi: 10.1016/j.conbuildmat.2011.12.110. DOI
Sánchez de Rojas M.I., Marin F.P., Frías M., Rivera J. Properties and performances of concrete tiles containing waste fired clay materials. J. Amer. Cer. Soc. 2007;90:3559–3565. doi: 10.1111/j.1551-2916.2007.01944.x. DOI
Puertas F., Garcia-Diaz I., Barba A., Gazulla M.F., Palacios M., Gómez M.P., Martínez-Ramírez S. Ceramic wastes as alternative raw materials for Portland cement clinker production. Cem. Concr. Compos. 2008;30:8–805. doi: 10.1016/j.cemconcomp.2008.06.003. DOI
Lavat A.E., Trezza M.A., Poggi M. Characterization of ceramic roof tile wastes as pozzolanic admixture. Waste Manage. 2009;29:1666–1674. doi: 10.1016/j.wasman.2008.10.019. PubMed DOI
Bignozzi M.C., Bondua S. Alternative blended cement with ceramic residues: Corrosion resistance investigation on reinforced mortar. Cem. Concr. Res. 2011;41:947–954. doi: 10.1016/j.cemconres.2011.05.001. DOI
Bektas F., Wang K., Ceylan H. Effects of crushed clay brick aggregate on mortar durability. Constr. Build. Mater. 2009;23:1909–1914. doi: 10.1016/j.conbuildmat.2008.09.006. DOI
Naceri A., Hamina M.C. Use of waste brick as a partial replacement of cement in mortar. Waste Manage. 2019;29:2378–2384. doi: 10.1016/j.wasman.2009.03.026. PubMed DOI
Bediako A. Pozzolanic potential and hydration behavior of ground waste clay brick obtained from clamp-firing technology. Case Stud. Constr. Mater. 2018;8:1–7. doi: 10.1016/j.cscm.2017.11.003. DOI
Heidari A., Hasanpour B. Effects of waste bricks powder of gachsaran company as a pozzolanic material in concrete. Asian J. Civ. Eng. 2013;14:755–763.
Lin K.L., Wu H.H., Shie J.L., Hwang C.L., Cheng A. Recycling waste brick from construction and demolition of buildings as pozzolanic materials. Waste Manage. Res. 2010;28:653–659. doi: 10.1177/0734242X09358735. PubMed DOI
Binici H., Kapur S., Arocena J., Kaplan H. The sulphate resistance of cements containing red brick dust and ground basaltic pumice with sub-microscopic evidence of intra-pore gypsum and ettringite as strengtheners. Cem. Concr. Compos. 2013;34:279–287. doi: 10.1016/j.cemconcomp.2011.10.001. DOI
Ay N., Unal M. The use of waste ceramic tile in cement production. Cem. Concr. Res. 2000;30:497–499. doi: 10.1016/S0008-8846(00)00202-7. DOI
Sabir B.B., Wild S., Bai J. Metakaolin and calcined clays as pozzolans for concrete: A review. Cem. Concr. Compos. 2001;23:441–454. doi: 10.1016/S0958-9465(00)00092-5. DOI
Pacheco-Torgal F., Jalali S. Compressive strength and durability properties of ceramic wastes based concrete. Mater. Struct. 2011;44:155–167. doi: 10.1617/s11527-010-9616-6. DOI
Toledo Filho R.D., Gonçalves J.P., Americano B.B., Fairbairn E.M.R. Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. Cem. Concr. Res. 2007;37:1357–1365. doi: 10.1016/j.cemconres.2007.06.005. DOI
Sun R., Huang D., Ge Z., Hu Y., Guan Y. Properties of self-consolidating concrete with recycled clay-brick-powder replacing cementitious material. J. Sust. Cem.-Based Mater. 2014;3:211–219. doi: 10.1080/21650373.2014.946542. DOI
Bektas F., Wang K., Ceylan H. Use of ground clay brick as a pozzolanic material in concrete. J. ASTM Int. 2008;5:1070–1078. doi: 10.1520/JAI101681. DOI
Tydlitát V., Zákoutský J., Volfová P., Černý R. Hydration heat development in blended cements containing fine-ground ceramics. Thermochim. Acta. 2012;543:125–129. doi: 10.1016/j.tca.2012.05.022. DOI
ASTM C618, Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. American Society for Testing and Materials; West Conshohocken, PA, USA: 2012.
EN 196-6, Methods of testing cement-Part 6: Determination of fineness. CEN; Brussels, Belgium: 2010.
EN 450-1, Fly ash for concrete-Part 1: Definition, specifications and conformity criteria. CEN; Brussels, Belgium: 2012.
EN 109-6, Tests for mechanical and physical properties of aggregates-Part 6: Determination of particle density and water absorption. CEN; Brussels, Belgium: 2013.
Subaşi S., Öztürk H., Emiroğlu M. Utilizing of waste ceramic powders as filler material in self-consolidating concrete. Constr. Build. Mater. 2017;149:567–574. doi: 10.1016/j.conbuildmat.2017.05.180. DOI
Kantro D.L. Influence of water-reducing admixtures on properties of cement paste—a miniature slump test. Cem. Concr. Aggr. 1980;2:95–102. doi: 10.1520/CCA10190J. DOI
EN 165-5, Methods of testing cement-Part 5: Pozzolanicity test for pozzolanic cement. CEN; Brussels, Belgium: 2011.
EN 196-1, Methods of testing cement-Part 1: Determination of strength. CEN; Brussels, Belgium: 2016.
Ellerbrock H.G., Spung S., Kuhlmann K. Particle Size Distribution and Properties of Cement. Part III: Influence of Grinding Process. ZKG Int. 1990;43:13–19.
Rahhal V., Pavlík Z., Trezza M., Tironi A., Kulovaná T., Pokorný J., Černý R. Red ceramic wastes: A calcined clay pozzolan. Calcined Clays Sustain. Concr. 2015;10:179–187. doi: 10.1007/978-94-017-9939-3-22. DOI
O’Farrel M., Wild S., Sabir B.B. Pore size distribution and compressive strength of waste clay brick mortar. Cem. Concr. Compos. 2001;23:81–91. doi: 10.1016/S0958-9465(00)00070-6. DOI
Mindess S., Young J.F. Concrete. Prentice-Hall; Englewood Cliffs, NJ, USA: 1981.
Matschei T., Lothenbach B., Glasser F.P. The role of calcium carbonate in cement hydration. Cem. Concr. Res. 2007;37:551–558. doi: 10.1016/j.cemconres.2006.10.013. DOI
Matschei T., Lothenbach B., Glasser F.P. The AFm phase in Portland cement. Cem. Concr. Res. 2007;37:118–130. doi: 10.1016/j.cemconres.2006.10.010. DOI
Lothenbach B. Thermodynamic equilibrium calculations in cementitious systems. Mater. Struct. 2010;43:1413–1433. doi: 10.1617/s11527-010-9592-x. DOI
Scrivener K.L., Lothenbach B., De Belie N., Gruyaert E., Skibsted J., Snellings R., Vollpracht A. TC 238-SCM: Hydration and microstructure of concrete with SCMs: State of the art on methods to determine degree of reaction of SCMs. Mater. Struct. 2015;48:835–862. doi: 10.1617/s11527-015-0527-4. DOI
Lightweight SFRC Benefitting from a Pre-Soaking and Internal Curing Process