Complex Characterization and Behavior of Waste Fired Brick Powder-Portland Cement System

. 2019 May 21 ; 12 (10) : . [epub] 20190521

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31117225

Grantová podpora
18-18-07332S Grantová Agentura České Republiky
AR/14/1 Ministry of Science, Technology and Productive Innovation of the Argentine Republic

Two waste fired brick powders coming from brick factories located in Argentine and Czech Republic were examined as alternative mineral admixtures for the production of blended cements. In pastes composition, local Portland cements (Argentine and Czech) were substituted with 8-40%, by mass, with powdered ceramic waste. For the ceramic waste-Portland cement system, workability, the heat released, pozzolanity, specific density, compressive strength, hydrated phases, porosity, and pore size distribution were tested. The relevance of the dilution effect, filler effect, and pozzolanic activity was analyzed to describe the general behavior of the pozzolan/cement system. The properties and performance of cement blends made with finely ground brick powder depended on the composition of ceramic waste and its reactivity, the plain cement used, and the replacement level. Results showed that the initial mini-slump was not affected by a low ceramic waste replacement (8% and 16%), and then it was decreased with an increase in the ceramic waste content. Brick powder behaved as a filler at early ages, but when the hydration proceeded, its pozzolanic activity consumed partially the calcium hydroxide and promoted the formation of hydrated calcium aluminates depending on the age and present carbonates. Finally, blended cements with fired brick powder had low compressive strength at early ages but comparable strength-class at later age.

Zobrazit více v PubMed

Uddin F., Shaikh A., Nguyen H.L. Properties of concrete containing recycled construction and demolition wastes as coarse aggregates. J. Sust. Cem.-Based Mater. 2013;2:204–217. doi: 10.1080/21650373.2013.833861. DOI

Kou S.C., Poon S.C. Effects of different kinds of recycled fine aggregate on properties of rendering mortar. J. Sust. Cem.-Based Mater. 2013;2:43–57. doi: 10.1080/21650373.2013.766400. DOI

Ben Said S.E., Khay S.E., Louilizi A. Experimental investigation of PCC incorporating RAP. Int. J. Concr. Struct. Mater. 2018;12 doi: 10.1186/s40069-018-0227-x. DOI

Akhtar A., Sarmah A.K. Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J. Clean. Prod. 2018;186:262–281. doi: 10.1016/j.jclepro.2018.03.085. DOI

Monteiro P.J.M., Miller S.A., Horwath A. Towards sustainable concrete. Nat. Mater. 2017;16:698–699. doi: 10.1038/nmat4930. PubMed DOI

Yu L., Zhou S., Deng W. Pozzolanic activity of volcanic rocks from Southern Jiangxi Province, China. J. Sust. Cem.-Based Mater. 2016;5:176–198. doi: 10.1080/21650373.2015.1010660. DOI

Tan K.H., Du H. Sandless concrete with fly ash as supplementary cementing material. J. Sust. Cem.-Based Mater. 2013;2:238–249. doi: 10.1080/21650373.2013.827994. DOI

Záleská M., Pavlíková M., Pavlík Z., Jankovský O., Pokorný J., Tydlitát V., Svora P., Černý R. Physical and chemical characterization of technogenic pozzolans for the application in blended cements. Constr. Build. Mater. 2018;160:106–116. doi: 10.1016/j.conbuildmat.2017.11.021. DOI

Hussin M.W., Khankhaje E. Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Constr. Build. Mater. 2016;116:15–24. doi: 10.1016/j.conbuildmat.2016.04.080. DOI

Kwan A.K.H., Chen J.J. Adding fly ash microsphere to improve packing density, flowability and strength of cement paste. Powder Technol. 2013;234:19–25. doi: 10.1016/j.powtec.2012.09.016. DOI

Chen J.J., Ng P.L., Li L.G., Kwan A.K.H. Use of superfine zeolite in conjunction with silica fume - Effects on rheology and strength of cementitious paste. Powder Technol. 2018;328:75–83. doi: 10.1016/j.powtec.2018.01.008. DOI

Chen J.J., Ng P.L., Kwan A.K.H., Li L.G. Lowering cement content in mortar by adding superfine zeolite as cement replacement and optimizing mixture proportions. J. Clean. Prod. 2019;210:66–76. doi: 10.1016/j.jclepro.2018.11.007. DOI

Pavlík Z., Fořt J., Záleská M., Pavlíková M., Trník A., Medved I., Keppert M., Koutsoukos P.G., Černý R. Energy-efficient thermal treatment of sewage sludge for its application in blended cements. J. Clean. Prod. 2016;112:409–419. doi: 10.1016/j.jclepro.2015.09.072. DOI

Cordeiro G.C., Sales C.P. Influence of calcining temperature on the pozzolanic characteristics of elephant grass ash. Cem. Concr. Compos. 2016;73:98–104. doi: 10.1016/j.cemconcomp.2016.07.008. DOI

Pavlíková M., Zemanová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Sedmidubský D., Pavlík Z. Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Manage. 2018;80:89–100. doi: 10.1016/j.wasman.2018.09.004. PubMed DOI

Jankovský O., Pavlíková M., Sedmidubský D., Bouša D., Lojka M., Pokorný J., Záleská M., Pavlík Z. Study on pozzolana activity of wheat straw ash as potential admixture for blended cements. Ceram.-Silikáty. 2017;61:327–339. doi: 10.13168/cs.2017.0032. DOI

Ting L., Qiang W., Shiyu Z. Effects of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes. Powder Technol. 2019;345:54–63. doi: 10.1016/j.powtec.2018.12.094. DOI

Aliabdo A.A., Abd Elmoaty A.E.M., Aboshama A.Y. Utilization of waste glass powder in the production of cement and concrete. Constr. Build. Mater. 2016;124:866–877. doi: 10.1016/j.conbuildmat.2016.08.016. DOI

Liu S., Zhang T., Guo Y., Wei J., Yu Q. Effects of SCMs particles on the compressive strength of micro-structurally designed cement paste: Inherent characteristic effect, particle size refinement effect, and hydration effect. Powder Technol. 2018;330:1–11. doi: 10.1016/j.powtec.2018.01.087. DOI

Senhadji Y., Escadeillas G., Mouli M., Khelafi H., Benosman Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technol. 2014;254:314–323. doi: 10.1016/j.powtec.2014.01.046. DOI

Xiao J., Ma Z., Sui T., Akbarnezhad A., Duan Z. Mechanical properties of concrete mixed with recycled powder produced from construction and demolition waste. J. Clean. Prod. 2018;188:720–731. doi: 10.1016/j.jclepro.2018.03.277. DOI

Cheng Y.H., Huang F., Liu R., Hou J.-L., Li G.-L. Test research on effects of waste ceramic polishing powder on the permeability resistance of concrete. Mater. Struct. 2016;49:729–738. doi: 10.1617/s11527-015-0533-6. DOI

Silva J., de Brito J., Veiga R. Fine ceramics replacing cement in mortars Partial replacement of cement with fine ceramics in rendering mortars. Mater. Struct. 2008;41:1333–1344. doi: 10.1617/s11527-007-9332-z. DOI

Awoyera P.O., Ndambuki J.M., Akinmusuru J.O., Omole D.O. Characterization of ceramic waste aggregate concrete. HBRC J. 2018;14:282–2897. doi: 10.1016/j.hbrcj.2016.11.003. DOI

Siddigue S., Shrivastava S., Chaudhary C., Gupta T. Strength and impact resistance properties of concrete containing fine bone China ceramic aggregate. Constr. Build. Mater. 2018;169:289–298. doi: 10.1016/j.conbuildmat.2018.02.213. DOI

European Commission Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, BREF-0807, 200. [(accessed on 11 June 2018)]; Available online: http://eippcb.jrc.ec.europa.eu/reference/BREF/cer_bref_0807.pdf.

Nirmala G., Viruthagiri G. FT-IR characterization of articulated ceramic bricks with wastes from ceramic industries. Spectrochim. Acta A. 2014;126:129–134. doi: 10.1016/j.saa.2014.01.143. PubMed DOI

Baronio G., Binda L. Study of the pozzolanicity of some bricks and clays. Constr. Build. Mat. 1997;11:41–46. doi: 10.1016/S0950-0618(96)00032-3. DOI

Pereira-de-Oliveira L.A., Castro-Gomes J.P., Santos P.M.S. The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Constr. Build. Mater. 2012;31:197–203. doi: 10.1016/j.conbuildmat.2011.12.110. DOI

Sánchez de Rojas M.I., Marin F.P., Frías M., Rivera J. Properties and performances of concrete tiles containing waste fired clay materials. J. Amer. Cer. Soc. 2007;90:3559–3565. doi: 10.1111/j.1551-2916.2007.01944.x. DOI

Puertas F., Garcia-Diaz I., Barba A., Gazulla M.F., Palacios M., Gómez M.P., Martínez-Ramírez S. Ceramic wastes as alternative raw materials for Portland cement clinker production. Cem. Concr. Compos. 2008;30:8–805. doi: 10.1016/j.cemconcomp.2008.06.003. DOI

Lavat A.E., Trezza M.A., Poggi M. Characterization of ceramic roof tile wastes as pozzolanic admixture. Waste Manage. 2009;29:1666–1674. doi: 10.1016/j.wasman.2008.10.019. PubMed DOI

Bignozzi M.C., Bondua S. Alternative blended cement with ceramic residues: Corrosion resistance investigation on reinforced mortar. Cem. Concr. Res. 2011;41:947–954. doi: 10.1016/j.cemconres.2011.05.001. DOI

Bektas F., Wang K., Ceylan H. Effects of crushed clay brick aggregate on mortar durability. Constr. Build. Mater. 2009;23:1909–1914. doi: 10.1016/j.conbuildmat.2008.09.006. DOI

Naceri A., Hamina M.C. Use of waste brick as a partial replacement of cement in mortar. Waste Manage. 2019;29:2378–2384. doi: 10.1016/j.wasman.2009.03.026. PubMed DOI

Bediako A. Pozzolanic potential and hydration behavior of ground waste clay brick obtained from clamp-firing technology. Case Stud. Constr. Mater. 2018;8:1–7. doi: 10.1016/j.cscm.2017.11.003. DOI

Heidari A., Hasanpour B. Effects of waste bricks powder of gachsaran company as a pozzolanic material in concrete. Asian J. Civ. Eng. 2013;14:755–763.

Lin K.L., Wu H.H., Shie J.L., Hwang C.L., Cheng A. Recycling waste brick from construction and demolition of buildings as pozzolanic materials. Waste Manage. Res. 2010;28:653–659. doi: 10.1177/0734242X09358735. PubMed DOI

Binici H., Kapur S., Arocena J., Kaplan H. The sulphate resistance of cements containing red brick dust and ground basaltic pumice with sub-microscopic evidence of intra-pore gypsum and ettringite as strengtheners. Cem. Concr. Compos. 2013;34:279–287. doi: 10.1016/j.cemconcomp.2011.10.001. DOI

Ay N., Unal M. The use of waste ceramic tile in cement production. Cem. Concr. Res. 2000;30:497–499. doi: 10.1016/S0008-8846(00)00202-7. DOI

Sabir B.B., Wild S., Bai J. Metakaolin and calcined clays as pozzolans for concrete: A review. Cem. Concr. Compos. 2001;23:441–454. doi: 10.1016/S0958-9465(00)00092-5. DOI

Pacheco-Torgal F., Jalali S. Compressive strength and durability properties of ceramic wastes based concrete. Mater. Struct. 2011;44:155–167. doi: 10.1617/s11527-010-9616-6. DOI

Toledo Filho R.D., Gonçalves J.P., Americano B.B., Fairbairn E.M.R. Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. Cem. Concr. Res. 2007;37:1357–1365. doi: 10.1016/j.cemconres.2007.06.005. DOI

Sun R., Huang D., Ge Z., Hu Y., Guan Y. Properties of self-consolidating concrete with recycled clay-brick-powder replacing cementitious material. J. Sust. Cem.-Based Mater. 2014;3:211–219. doi: 10.1080/21650373.2014.946542. DOI

Bektas F., Wang K., Ceylan H. Use of ground clay brick as a pozzolanic material in concrete. J. ASTM Int. 2008;5:1070–1078. doi: 10.1520/JAI101681. DOI

Tydlitát V., Zákoutský J., Volfová P., Černý R. Hydration heat development in blended cements containing fine-ground ceramics. Thermochim. Acta. 2012;543:125–129. doi: 10.1016/j.tca.2012.05.022. DOI

ASTM C618, Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. American Society for Testing and Materials; West Conshohocken, PA, USA: 2012.

EN 196-6, Methods of testing cement-Part 6: Determination of fineness. CEN; Brussels, Belgium: 2010.

EN 450-1, Fly ash for concrete-Part 1: Definition, specifications and conformity criteria. CEN; Brussels, Belgium: 2012.

EN 109-6, Tests for mechanical and physical properties of aggregates-Part 6: Determination of particle density and water absorption. CEN; Brussels, Belgium: 2013.

Subaşi S., Öztürk H., Emiroğlu M. Utilizing of waste ceramic powders as filler material in self-consolidating concrete. Constr. Build. Mater. 2017;149:567–574. doi: 10.1016/j.conbuildmat.2017.05.180. DOI

Kantro D.L. Influence of water-reducing admixtures on properties of cement paste—a miniature slump test. Cem. Concr. Aggr. 1980;2:95–102. doi: 10.1520/CCA10190J. DOI

EN 165-5, Methods of testing cement-Part 5: Pozzolanicity test for pozzolanic cement. CEN; Brussels, Belgium: 2011.

EN 196-1, Methods of testing cement-Part 1: Determination of strength. CEN; Brussels, Belgium: 2016.

Ellerbrock H.G., Spung S., Kuhlmann K. Particle Size Distribution and Properties of Cement. Part III: Influence of Grinding Process. ZKG Int. 1990;43:13–19.

Rahhal V., Pavlík Z., Trezza M., Tironi A., Kulovaná T., Pokorný J., Černý R. Red ceramic wastes: A calcined clay pozzolan. Calcined Clays Sustain. Concr. 2015;10:179–187. doi: 10.1007/978-94-017-9939-3-22. DOI

O’Farrel M., Wild S., Sabir B.B. Pore size distribution and compressive strength of waste clay brick mortar. Cem. Concr. Compos. 2001;23:81–91. doi: 10.1016/S0958-9465(00)00070-6. DOI

Mindess S., Young J.F. Concrete. Prentice-Hall; Englewood Cliffs, NJ, USA: 1981.

Matschei T., Lothenbach B., Glasser F.P. The role of calcium carbonate in cement hydration. Cem. Concr. Res. 2007;37:551–558. doi: 10.1016/j.cemconres.2006.10.013. DOI

Matschei T., Lothenbach B., Glasser F.P. The AFm phase in Portland cement. Cem. Concr. Res. 2007;37:118–130. doi: 10.1016/j.cemconres.2006.10.010. DOI

Lothenbach B. Thermodynamic equilibrium calculations in cementitious systems. Mater. Struct. 2010;43:1413–1433. doi: 10.1617/s11527-010-9592-x. DOI

Scrivener K.L., Lothenbach B., De Belie N., Gruyaert E., Skibsted J., Snellings R., Vollpracht A. TC 238-SCM: Hydration and microstructure of concrete with SCMs: State of the art on methods to determine degree of reaction of SCMs. Mater. Struct. 2015;48:835–862. doi: 10.1617/s11527-015-0527-4. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Lightweight SFRC Benefitting from a Pre-Soaking and Internal Curing Process

. 2019 Dec 11 ; 12 (24) : . [epub] 20191211

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...