Body Composition Changes During a 24-h Winter Mountain Running Race Under Extremely Cold Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31139095
PubMed Central
PMC6527803
DOI
10.3389/fphys.2019.00585
Knihovny.cz E-zdroje
- Klíčová slova
- 24 h, body composition, extreme weather conditions, ultra-running, winter,
- Publikační typ
- časopisecké články MeSH
Background: To date, no study has focused on body composition characteristics and on parameters associated with skeletal muscle damage and renal function in runners participating in a 24-h winter race held under extremely cold environmental conditions (average temperature of -14.3°C). Methods: Anthropometric characteristics, plasma urea (PU), plasma creatinine (Pcr), creatine kinase (CK), plasma volume (PV) and total body water (TBW) were assessed pre- and post-race in 20 finishers (14 men and 6 women). Results: In male runners, body mass (BM) (p = 0.003) and body fat (BF) (p = 0.001) decreased [-1.1 kg (-1.4%) and -1.1 kg (-13.4%), respectively]; skeletal muscle mass (SM) and TBW remained stable (p > 0.05). In female runners, BF decreased (p = 0.036) [-1.3 kg (-7.8%)] while BM, SM and TBW remained stable (p > 0.05). The change (Δ) in BM was not related to Δ BF; however, Δ BM was related to Δ SM [r = 0.58, p = 0.007] and Δ TBW (r = 0.59, p = 0.007). Δ SM correlated with Δ TBW (r = 0.51, p = 0.021). Moreover, Δ BF was negatively associated with Δ SM (r = -0.65, p = 0.002). PV (p < 0.001), CK (p < 0.001), Pcr (p = 0.004) and PU (p < 0.001) increased and creatinine clearance (CrCl) decreased (p = 0.002). The decrease in BM was negatively related to the increase in CK (r = -0.71, p < 0.001). Δ Pcr was positively related to Δ PU (r = 0.64, p = 0.002). The decrease in CrCl was negatively associated with the increase in both PU (r = -0.72, p < 0.001) and CK (r = -0.48, p = 0.032). Conclusion: The 24-h running race under extremely cold conditions led to a significant BF decrease, whereas SM and TBW remained stable in both males and females. Nevertheless, the increase in CK, Pcr and PU was related to the damage of SM with transient impaired renal function.
Centre of Sports Activities Brno University of Technology Brno Czechia
Institute of Experimental Biology Masaryk University Brno Czechia
Institute of Mathematics Brno University of Technology Brno Czechia
Institute of Primary Care University of Zurich Zurich Switzerland
Zobrazit více v PubMed
Ball S. D., Altena T. S., Stan P. D. (2004a). Comparison of anthropometry to DXA: a new prediction equation for men. Eur. J. Clin. Nutr. 58 1525–1531. 10.1038/sj.ejcn.1602003 PubMed DOI
Ball S. D., Stan P., Desimone R. (2004b). Accuracy of anthropometry compared to dual energy X-ray absorptiometry. A new generalizable equation for women. Res. Q. Exerc. Sport 75 248–258. 10.1080/02701367.2004.10609158 PubMed DOI
Baur D. A., Bach C. W., Hyder W. J., Ormsbee M. J. (2016). Fluid retention, muscle damage, and altered body composition at the Ultraman triathlon. Eur. J. Appl. Physiol. 116 447–458. 10.1007/s00421-015-3291-9 PubMed DOI
Becque M. D., Katch V. L., Moffatt R. J. (1986). Time course of skin-plus-fat compression in males and females. Hum. Biol. 58 33–42. PubMed
Bedogni G., Malavolti M., Severi S., Poli M., Mussi C., Fantuzzi A. L., et al. (2002). Accuracy of an eight-point tactile-electrode impedance method in the assessment of total body water. Eur. J. Clin. Nutr. 56 1143–1148. 10.1038/sj.ejcn.1601466 PubMed DOI
Bonett D. G., Wright T. A. (2000). Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika 65 23–28. 10.1007/BF02294183 DOI
Bracher A., Knechtle B., Gnädinger M., Bürge J., Rüst C. A., Knechtle P., et al. (2012). Fluid intake and changes in limb volumes in male ultra-marathoners: Does fluid overload lead to peripheral oedema? Eur. J. Appl. Physiol. 112 991–1003. 10.1007/s00421-011-2056-3 PubMed DOI
Cejka C., Knechtle B., Knechtle P., Rüst C. A., Rosemann T. (2012). An increased fluid intake leads to feet swelling in 100-km ultra-marathoners – an observational field study. J. Int. Soc. Sports Nutr. 9 1–10. 10.1186/1550-2783-9-11 PubMed DOI PMC
Chapman R., Tibbetts G., Case S., Evans D., Mills W. J., Jr. (1992). Body composition testing of athletes in the field using bioelectric impedance analysis. Alaska Med. 34 87–90. PubMed
Chlíbková D., Knechtle B., Rosemann T., Tomášková I., Novotný J., Žákovská A., et al. (2015). Rhabdomyolysis and exercise-associated hyponatremia in ultra-bikers and ultra-runners. J. Int. Soc. Sports Nutr. 12 1–12. 10.1186/s12970-015-0091-x PubMed DOI PMC
Chlíbková D., Knechtle B., Rosemann T., Žákovská A., Tomášková I. (2014). The prevalence of exercise-associated hyponatremia in 24-hour ultra-mountain bikers, 24-hour ultra-runners and multi-stage ultra-mountain bikers in the Czech Republic. J. Int. Soc. Sports Nutr. 11 1–17. 10.1186/1550-2783-11-3 PubMed DOI PMC
Chlíbková D., Nikolaidis P. T., Rosemann T., Knechtle B., Bednář J. (2019). Maintained hydration status after a 24-h winter mountain running race under extremely cold conditions. Front Physiol 9:1959 10.3389/fphys.2018.01959 PubMed DOI PMC
Clarkson P. M., Kearns A. K., Rouzier P., Rubin R., Thompson P. D. (2006). Serum creatine kinase levels and renal function measures in exertional muscle damage. Med. Sci. Sports Exerc. 38 623–627. 10.1249/01.mss.0000210192.49210.fc PubMed DOI
Cockcroft D. W., Gault M. H. (1976). Prediction of creatinine clearance from serum creatinine. Nephron 16 31–41. 10.1159/000180580 PubMed DOI
Coker R. H., Weaver A. N., Coker M. S., Murphy C. J., Gunga H. C., Steinach M. (2017). Metabolic responses to the Yukon Arctic Ultra: longest and coldest in the world. Med. Sci. Sports Exerc. 49 357–362. 10.1249/MSS.0000000000001095 PubMed DOI PMC
Costa R. J. S., Gill A. K., Hankey J., Wright A., Marczak S. (2014). Perturbed energy balance and hydration status in ultra-endurance runners during a 24h ultra-marathon. Br. J. Nutr. 112 428–437. 10.1017/S0007114514000907 PubMed DOI
Costa R. J. S., Harper-Smith A. D., Oliver S. J., Walters R., Maassen N., Bilzon J. L., et al. (2010). The effects of two nights of sleep deprivation with and without energy restriction on selected immune responses at rest and in response to cold exposure. Eur. J. Appl. Physiol. 106 417–428. 10.1007/s00421-010-1378-x PubMed DOI
Fallon K. E., Sivyer G., Sivyer K., Dare A. (1999). The biochemistry of runners in a 1600 km ultramarathon. Br. J. Sports Med. 33 264–269. 10.1136/bjsm.33.4.264 PubMed DOI PMC
Fellmann N., Sagnol M., Bedu M., Falgairette G., Van Praagh E., Gaillard G., et al. (1988). Enzymatic and hormonal responses following a 24 h endurance run and a 10 h triathlon race. Eur. J. Appl. Physiol. 57 545–553. 10.1007/bf00418460 PubMed DOI
Halsey L. G., Stroud M. A. (2012). 100 years since Scott reached the pole: a century of learning about the physiological demands of Antarctica. Physiol. Rev. 92 521–536. 10.1152/physrev.00031.2011 PubMed DOI
Hew-Butler T., Holexa B. T., Fogard K., Stuempfle K. J., Hoffman M. D. (2015). Comparison of body composition techniques before and after a 161-km ultramarathon using DXA, BIS and BIA. Int. J. Sports Med. 36 169–174. 10.1055/s-0034-1387777 PubMed DOI
Hoffman M. D., Goulet E. D. B., Maughan R. J. (2018). Considerations in the use of body mass change to estimate change in hydration status during a 161-kilometer ultramarathon running competition. Sports Med. 48 243–250. 10.1007/s40279-017-0782-3 PubMed DOI
Hoffman M. D., Stuempfle K. J. (2014). Hydration strategies, weight change and performance in a 161 km ultramarathon. Res. Sports Med. 22 213–225. 10.1080/15438627.2014.915838 PubMed DOI
Hoffman M. D., Stuempfle K. J., Fogard K., Hew-Butler T., Winger J., Weiss R. H. (2013). Urine dipstick analysis for identification of runners susceptible to acute kidney injury following an ultramarathon. J. Sports Sci. 31 20–31. 10.1080/02640414.2012.720705 PubMed DOI
Inoue Y., Ichinose-Kuwahara T., Funaki C. (2014). Sex differences in acetylcholine-induced sweating responses due to physical training. J. Physiol. Antropol. 33 13 10.1186/1880-6805-33-13 PubMed DOI PMC
Johannsen M. M., Shin K., Priebe K., Coker R. H. (2018). Alaska Mountain Wilderness Ski Classic: alterations in energy expenditure and body composition. Wilderness Environ. Med. 29 221–225. 10.1016/j.wem.2018.02.005 PubMed DOI
Kao W. F., Shyu C. L., Yang X. W., Hsu T. F., Chen J. J., Kao W. C., et al. (2008). Athletic performance and serial weight changes during 12- and 24-hour ultra-marathons. Clin. J. Sport Med. 18 155–158. 10.1097/JSM.0b013e31815cdd37 PubMed DOI
Knechtle B., Bircher S. (2005). Changes in body composition during an extreme endurance run. Praxis 94 371–377. 10.1024/0369-8394.94.10.371 PubMed DOI
Knechtle B., Joleska I., Wirth A., Knechtle P., Rosemann T., Senn O. (2010a). Intra- and inter-judge reliabilities in measuring the skin-fold thicknesses of ultra runners under field conditions. Percept. Mot. Skills 111 105–106. 10.2466/03.05.pms.111.4.105-106 PubMed DOI
Knechtle B., Knechtle P., Rosemann T. (2010b). No exercise-associated hyponatremia found in an observational field study of male ultra-marathoners participating in a 24-hour ultra-run. Phys. Sportsmed. 4 94–100. 10.3810/psm.2010.12.1831 PubMed DOI
Knechtle B., Salas Fraire O., Andonie J. L., Kohler G. (2008). Effect of a multistage ultra-endurance triathlon on body composition: World Challenge Deca Iron Triathlon 2006. Br J Sports Med. 42 121–125. 10.1136/bjsm.2007.038034 PubMed DOI
Knechtle B., Vinzent T., Kirby S., Knechtle P., Rosemann T. (2009). The recovery phase following a Triple Iron Triathlon. J. Hum. Kinet. 21 65–74. 10.2478/v10078-09-0008-3 DOI
Knechtle B., Wirth A., Knechtle P., Rosemann T., Senn O. (2011b). Do ultra-runners in a 24-h run really dehydrate? Irish J. Med. Sci. 180 129–134. 10.1007/s11845-010-0500-8 PubMed DOI
Knechtle B., Wirth A., Knechtle P., Rosemann T., Rüst C. A., Bescós R. (2011c). A comparison of fat mass and skeletal muscle mass estimation in male ultra-endurance athletes using bioelectrical impedance analysis and different anthropometric methods. Nutr. Hosp. 26 1420–1427. 10.1590/S0212-16112011000600032 PubMed DOI
Kratz A., Ferraro M., Sluss P. M., Lewandrowski K. B. (2004). Laboratory reference values. N. Engl. J. Med. 351 1548–1563. 10.1056/NEJMcpc049016 PubMed DOI
Kratz A., Lewandrowski K. B., Siegel A. J., Chun K. Y., Flood J. G., Van Cott E. M., et al. (2002). Effect of marathon running on hematologic and biochemical laboratory parameters, including cardiac markers. Am. J. Clin. Pathol. 118 856–863. 10.1309/14TY-2TDJ-1X0Y-1V6V PubMed DOI
Lee R. C., Wang Z., Heo M., Ross R., Janssen I., Heymsfield S. B. (2000). Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models. Am. J. Clin. Nutr. 72 796–803. 10.1093/ajcn/72.3.796 PubMed DOI
Lehmann M., Huonker M., Dimeo F. (1995). Serum amino acid concentrations in nine athletes before and after the 1993 Colmar Ultra Triathlon. Int. J. Sports Med. 16 155–159. 10.1055/s-2007-972984 PubMed DOI
Marfell-Jones M. J., Olds T., Stewart A. D., Carter L. (2006). ISAK accreditation handbook. Potchefstroom: International Society for the Advancement of Kinanthropometry (ISAK).
Maughan R. J., Shirreffs S. M., Leiper J. B. (2007). Errors in the estimation of hydration status from changes in body mass. J. Sports Sci. 25 797–804. 10.1080/02640410600875143 PubMed DOI
Milledge J. S., Bryson E. I., Catley D. M., Hesp R., Luff N., Minty B. D., et al. (1982). Sodium balance, fluid homeostasis and the renin-aldosterone system during the prolonged exercise of hill walking. Clin. Sci. (Lond.) 62 595–604. 10.1042/cs0620595 PubMed DOI
Mischler I., Boirie Y., Gachon P., Pialoux V., Mounier R., Rousett P., et al. (2003). Human albumin synthesis is increased by an ultra-endurance trial. Med. Sci. Sports Exerc. 35 75–81. 10.1249/01.MSS.0000043289.89267.15 PubMed DOI
Mueller S. M., Anliker E., Knechtle P., Knechtle B., Toigo M. (2013). Changes in body composition in triathletes during an Ironman race. Eur. J. Appl. Physiol. 113 2343–2352. 10.1007/s00421-013-2670-3 PubMed DOI
Nimmo M. (2004). Exercise in the cold. J. Sports Sci. 22 898–915. PubMed
Noakes T. D., Sharwood K., Speedy D., Hew T., Reid S., Dugas J., et al. (2005). Three independent biological mechanisms cause exercise-associated hyponatremia: evidence from 2,135 weighed competitive athletic performances. Proc Natl Acad Sci U S A 102 18550–18555. 10.1073/pnas.0509096102 PubMed DOI PMC
Nolte H. W., Noakes T. D., Van Vuuren B. (2011). Protection of total body water content and absence of hyperthermia despite 2% body mass loss (‘voluntary dehydration’) in soldiers drinking ad libitum during prolonged exercise in cool environmental conditions. Br J Sports Med. 45 1106–1112. 10.1136/bjsm.2010.075507 PubMed DOI
Nosaka K., Clarkson P. M. (1996). Changes in indicators of inflammation after eccentric exercise of the elbow flexors. Med. Sci. Sports Exerc. 28 953–961. 10.1097/00005768-199608000-00003 PubMed DOI
Olsson K. E., Saltin B. (1970). Variation in total body water with muscle glycogen changes in man. Acta Physiol. Scand. 80 11–18. 10.1111/j.1748-1716.1970.tb04764.x PubMed DOI
O’Hara W. J., Allen C., Shepard R. J. (1977). Loss of body fat during an arctic winter expedition. Can. J. Physiol. and Pharmacol. 55 1235–1241. 10.1139/y77-168 PubMed DOI
Pastene J., German M., Allevard A. M., Gharib C., Lacour J. R. (1996). Water balance during and after marathon running. Eur. J. Appl. Physiol. 73 49–55. 10.1007/bf00262808 PubMed DOI
Patel D. R., Gyamfi R., Torres A. (2009). Exertional rhabdomyolysis and acute kidney injury. Phys. Sportsmed. 37 71–79. 10.3810/psm.2009.04.1685 PubMed DOI
Paulin S., Roberts J., Roberts M., Davis I. (2015). A case study evaluation of competitors undertaking an antarctic ultra-endurance event: nutrition, hydration and body composition variables. Extrem. Physiol. Med. 4 1–11. 10.1186/s13728-015-0022-0 PubMed DOI PMC
Pialoux V., Mischler I., Mounier R., Gachon R., Ritz P., Coudert J., et al. (2004). Effect of equilibrated hydration changes on total body water estimated by bioelectrical impedance analysis. Br. J. Nutr. 91 153–159. PubMed
Raschka C., Plath M. (1992). Body fat compartment and its relationship to food intake and clinical chemical parameters during extreme endurance performance. Schweiz Z. Sportmed. 40 13–25. PubMed
Schalt A., Johannsen M. M., Kim J., Chen R., Murphy C. J., Coker M. S., et al. (2018). Negative energy balance does not alter fat-free mass during the Yukon Arctic Ultra-the longest and the coldest ultramarathon. Front. Physiol. 9:1761 10.3389/fphys.2018.01761 PubMed DOI PMC
Shepard R. J. (1985). Adaptation to exercise in the cold. Sports Med. 2 59–71. 10.2165/00007256-198502010-00006 PubMed DOI
Shepard R. J. (1993). Metabolic adaptations to exercise in the cold. An update. Sports Med. 16 266–289. 10.2165/00007256-199316040-00005 PubMed DOI
Sinert R., Kohl L., Rainone T., Scalea T. (1994). Exercise-induced rhabdomyolysis. Ann. Emerg. Med. 23 1301–1306. PubMed
Skenderi K. P., Kavouras S. A., Anastasiou C. A., Yiannakouris N., Matalas A. L. (2006). Exertional rhabdomyolysis during a 246-km continuous race. Med. Sci. Sports Exerc. 38 1054–1057. 10.1249/01.mss.0000222831.35897.5f PubMed DOI
Stevens G. H. J., Graham T. E., Wilson B. A. (1987). Gender differences in cardiovascular and metabolic responses to cold and exercise. Can. J. Physiol. and Pharmacol. 65 165–171. 10.1139/y87-032 PubMed DOI
Stewart A. D., Hannan W. J. (2000). Prediction of fat and fat-free mass in male athletes using dual X-ray absorptiometry as the reference method. J. Sports Sci. 18 263–274. 10.1080/026404100365009 PubMed DOI
Stuempfle K. J., Hoffman M. D., Weschler L. B., Rogers I. R., Hew-Butler T. (2011). Race diet of finishers and non-finishers in a 100 mile (161 km) mountain footrace. J. Sport Med. 30 529–535. 10.1080/07315724.2011.10719999 PubMed DOI
Stuempfle K. J., Lehmann D. R., Case H. S., Bailey S., Hughes S. L., McKenzie J., et al. (2002). Hyponatremia in a cold weather ultraendurance race. Alaska Med. 44 51–55. PubMed
Stuempfle K. J., Lehmann D. R., Case H. S., Hughes S. L., Evans D. (2003). Change in serum sodium concentration during a cold weather ultradistance race. Clin. J. Sport Med. 13 171–175. 10.1097/00042752-200305000-00008 PubMed DOI
Tam N., Nolte H. W., Noakes T. D. (2011). Changes in total body water content during running races of 21.1 km and 56 km in athletes drinking ad libitum. Clin. J. Sport Med. 21 218–225. 10.1097/JSM.0b013e31820eb8d7 PubMed DOI
Thompson P. D., Clarkson P., Karas R. H. (2003). Statin associated myopathy. JAMA 289 1681–1690. 10.1001/jama.289.13.1681 PubMed DOI
Uberoi H. S., Dugal J. S., Kasthuri A. S., Kolhe V. S., Kumar A. K., Cruz S. A. (1991). Acute renal failure in severe exertional rhabdomyolysis. J. Assoc. Physicians India 39 667–679. PubMed
Van Beaumont W. (1972). Evaluation of hemoconcentration from hematocrit measurements. J. Appl. Physiol. 32 712–713. 10.1152/jappl.1972.32.5.712 PubMed DOI
Vitiello D., Degache F., Saugy J. J., Place N., Schena F., Millet G. (2015). The increase in hydric volume is associated to contractile impairment in the calf after the world’s most extreme mountain ultra-marathon. Extrem. Physiol. Med. 4 1–8. 10.1186/s13728-015-0037-6 PubMed DOI PMC
Warner E. R., Fornetti W. C., Jallo J. J., Pivarnik J. M. (2004). A skinfold model to predict fat-free mass in female athletes. J. Athl. Train. 39 259–262. PubMed PMC
Waśkiewicz Z., Kłapcińska B., Sadowska-Krêpa E., Czuba M., Kempa K., Kimsa E., et al. (2012). Acute metabolic responses to a 24-h ultra-marathon race in male amateur runners. Eur. J. Appl. Physiol. 112 1679–1688. 10.1007/s00421-011-2135-5 PubMed DOI PMC
Weitkunat T., Knechtle B., Knechtle P., Rüst C. A., Rosemann T. (2012). Body composition and hydration status changes in male and female open-water swimmers during an ultra-endurance event. J. Sports. Sci. 30 1003–1013. 10.1080/02640414 PubMed DOI