Automatic assessment of the cardiomyocyte development stages from confocal microscopy images using deep convolutional networks
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31145728
PubMed Central
PMC6542571
DOI
10.1371/journal.pone.0216720
PII: PONE-D-18-34736
Knihovny.cz E-zdroje
- MeSH
- buněčná diferenciace MeSH
- fluorescenční barviva MeSH
- kardiomyocyty cytologie ultrastruktura MeSH
- konfokální mikroskopie metody MeSH
- krysa rodu Rattus MeSH
- modely kardiovaskulární MeSH
- neuronové sítě MeSH
- počítačové zpracování obrazu metody MeSH
- sarkolema ultrastruktura MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluorescenční barviva MeSH
Computer assisted image acquisition techniques, including confocal microscopy, require efficient tools for an automatic sorting of vast amount of generated image data. The complexity of the classification process, absence of adequate tools, and insufficient amount of reference data has made the automated processing of images challenging. Mastering of this issue would allow implementation of statistical analysis in research areas such as in research on formation of t-tubules in cardiac myocytes. We developed a system aimed at automatic assessment of cardiomyocyte development stages (SAACS). The system classifies confocal images of cardiomyocytes with fluorescent dye stained sarcolemma. We based SAACS on a densely connected convolutional network (DenseNet) topology. We created a set of labelled source images, proposed an appropriate data augmentation technique and designed a class probability graph. We showed that the DenseNet topology, in combination with the augmentation technique is suitable for the given task, and that high-resolution images are instrumental for image categorization. SAACS, in combination with the automatic high-throughput confocal imaging, will allow application of statistical analysis in the research of the tubular system development or remodelling and loss.
Institute of Automation and Computer Science Brno University of Technology Brno Czech Republic
Institute of Molecular Physiology and Genetics Centre of Biosciences SAS Bratislava Slovakia
Zobrazit více v PubMed
Bers DM. Calcium fluxes involved in control of cardiac myocyte contraction. Circulation Research. 2000;87(4):275–281. 10.1161/01.RES.87.4.275 PubMed DOI
Franzini-Armstrong C. The relationship between form and function throughout the history of excitation–contraction coupling. The Journal of General Physiology. 2018. PubMed PMC
Louch WE, Koivumäki JT, P T. Calcium signalling in developing cardiomyocytes: implications for model systems and disease. The Journal of physiology. 2015;593(Pt 5):1047–1063. 10.1113/jphysiol.2014.274712 PubMed DOI PMC
Parikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L, Kim K, et al. Thyroid and Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circulation Research. 2017;121(12):1323–1330. 10.1161/CIRCRESAHA.117.311920 PubMed DOI PMC
Macková K, Zahradníková A, Hot́ka M, Hoffmannová B, Zahradník I, Zahradníková A. Calcium release-dependent inactivation precedes formation of the tubular system in developing rat cardiac myocytes. European Biophysics Journal. 2017;46(8):691–703. 10.1007/s00249-017-1249-z PubMed DOI
High-Throughput Calcium and Contractility System; 2018. Available from: http://www.ionoptix.com/wp-content/uploads/2017/11/multicell_online.pdf.
Klimas A, Ambrosi CM, Yu J, Williams JC, Bien H, Entcheva E. OptoDyCE as an automated system for high-throughput all-optical dynamic cardiac electrophysiology. Nature Communications. 2016;7(11542):1–12. PubMed PMC
Guo A, Song LS. AutoTT: automated detection and analysis of T-tubule architecture in cardiomyocytes. Biophysical Journal. 2014;106(12):2729–2736. 10.1016/j.bpj.2014.05.013 PubMed DOI PMC
Frisk M, Ruud M, Espe EKS, Aronsen JM, Røe ÅT, Zhang L, et al. Elevated ventricular wall stress disrupts cardiomyocyte t-tubule structure and calcium homeostasis. Cardiovascular Research. 2016;112(1):443–451. 10.1093/cvr/cvw111 PubMed DOI PMC
Singh JK, Barsegyan V, Bassi N, Marszalec W, Tai S, Mothkur S, et al. T-tubule remodeling and increased heterogeneity of calcium release during the progression to heart failure in intact rat ventricle. Physiological Reports. 2017;5(24):e13540 10.14814/phy2.13540 PubMed DOI PMC
Zhang C, Chen B, Wang Y, Guo A, Tang Y, Khataei T, et al. MG53 is dispensable for T-tubule maturation but critical for maintaining T-tubule integrity following cardiac stress. Journal of Molecular and Cellular Cardiology. 2017;112:123–130. 10.1016/j.yjmcc.2017.08.007 PubMed DOI PMC
DiCarlo JJ, Zoccolan D, Rust NC. How does the brain solve visual object recognition? Neuron. 2012;73(3):415–434. 10.1016/j.neuron.2012.01.010 PubMed DOI PMC
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444. 10.1038/nature14539 PubMed DOI
Pinto N, Cox DD, DiCarlo JJ. Why is Real-World Visual Object Recognition Hard? PLOS Computational Biology. 2008;4(1):1–6. 10.1371/journal.pcbi.0040027 PubMed DOI PMC
Lemnaru C, Potolea R. Imbalanced Classification Problems: Systematic Study, Issues and Best Practices In: Enterprise Information Systems. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 35–50.
Gao Z, Wang L, Zhou L, Zhang J. HEp-2 Cell Image Classification With Deep Convolutional Neural Networks. IEEE Journal of Biomedical and Health Informatics. 2017;21(2):416–428. 10.1109/JBHI.2016.2526603 PubMed DOI
Xu Y, Jia Z, Ai Y, Zhang F, Lai M, Chang EI. Deep convolutional activation features for large scale Brain Tumor histopathology image classification and segmentation. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2015. p. 947–951.
Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, et al. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? IEEE Transactions on Medical Imaging. 2016;35(5):1299–1312. 10.1109/TMI.2016.2535302 PubMed DOI
Zeiler MD, Fergus R. Visualizing and Understanding Convolutional Networks In: Computer Vision—ECCV 2014. Cham: Springer International Publishing; 2014. p. 818–833.
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR. 2014;abs/1409.1556.
Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM. 2017;60(6):84–90. 10.1145/3065386 DOI
Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks. 1994;5(2):157–166. 10.1109/72.279181 PubMed DOI
Xu M, Papageorgiou DP, Abidi SZ, Dao M, Zhao H, Karniadakis GE. A deep convolutional neural network for classification of red blood cells in sickle cell anemia. PLOS Computational Biology. 2017;13(10):1–27. 10.1371/journal.pcbi.1005746 PubMed DOI PMC
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015. p. 1–9.
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Architecture for Computer Vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016. p. 2818–2826.
Srivastava RK, Greff K, Schmidhuber J. Training Very Deep Networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems—Volume 2. NIPS’15. Cambridge, MA, USA: MIT Press; 2015. p. 2377–2385.
He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016. p. 770–778.
He K, Zhang X, Ren S, Sun J. Identity Mappings in Deep Residual Networks In: Computer Vision—ECCV 2016. Cham: Springer International Publishing; 2016. p. 630–645.
Huang G, Sun Y, Liu Z, Sedra D, Weinberger KQ. Deep Networks with Stochastic Depth In: Leibe B, Matas J, Sebe N, Welling M, editors. Computer Vision—ECCV 2016. Cham: Springer International Publishing; 2016. p. 646–661.
Han D, Kim J, Kim J. Deep Pyramidal Residual Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017. p. 6307–6315.
Huang G, Liu Z, v d Maaten L, Weinberger KQ. Densely Connected Convolutional Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017. p. 2261–2269.
Yu Z, Li T, Luo G, Fujita H, Yu N, Pan Y. Convolutional networks with cross-layer neurons for image recognition. Information Sciences. 2018;433-434:241–254. 10.1016/j.ins.2017.12.045 DOI
Wang S, Liu W, Wu J, Cao L, Meng Q, Kennedy PJ. Training deep neural networks on imbalanced data sets. In: 2016 International Joint Conference on Neural Networks (IJCNN); 2016. p. 4368–4374.
Škrabánek P, Doležel P. On reporting performance of binary classifiers. Scientific Papers of the University of Pardubice, Series D: Faculty of Economics and Administration. 2017;24(41):181–192.
Zahradníková jr A, Škrabánek P. Confocal Microscopy Images of Cardiomyocyte Development Stages; 2019. Available from: 10.6084/m9.figshare.8063369. PubMed DOI PMC
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015. vol. 37 of Proceedings of Machine Learning Research. PMLR; 2015. p. 448–456.
Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Information Processing & Management. 2009;45(4):427–437. 10.1016/j.ipm.2009.03.002 DOI
Ruder S. An overview of gradient descent optimization algorithms. CoRR. 2016;abs/1609.04747.
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems; 2015. Available from: https://www.tensorflow.org/.