The kinetochore and the origin of eukaryotic chromosome segregation

. 2019 Jun 25 ; 116 (26) : 12596-12598. [epub] 20190607

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, komentáře

Perzistentní odkaz   https://www.medvik.cz/link/pmid31175149

Grantová podpora
Wellcome Trust - United Kingdom
203134/Z/16/Z Wellcome Trust - United Kingdom
MR/N010558/1 Medical Research Council - United Kingdom

Komentář

PubMed

Zobrazit více v PubMed

Sazer S., Lynch M., Needleman D., Deciphering the evolutionary history of open and closed mitosis. Curr. Biol. 24, R1099–R1103 (2014). PubMed PMC

Suresh S., Osmani S. A., Poring over chromosomes: Mitotic nuclear pore complex segregation. Curr. Opin. Cell Biol. 58, 42–49 (2019). PubMed

Tromer E. C., van Hooff J. J. E., Kops G. J. P. L., Snel B., Mosaic origin of the eukaryotic kinetochore. Proc. Natl. Acad. Sci. U.S.A. 116, 12873–12882. PubMed PMC

Nolivos S., Sherratt D., The bacterial chromosome: Architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol. Rev. 38, 380–392 (2014). PubMed PMC

Marczynski G. T., Petit K., Patel P., Crosstalk regulation between bacterial chromosome replication and chromosome partitioning. Front. Microbiol. 10, 279 (2019). PubMed PMC

Kleckner N., et al. , The bacterial nucleoid: Nature, dynamics and sister segregation. Curr. Opin. Microbiol. 22, 127–137 (2014). PubMed PMC

Shebelut C. W., Guberman J. M., van Teeffelen S., Yakhnina A. A., Gitai Z., Caulobacter chromosome segregation is an ordered multistep process. Proc. Natl. Acad. Sci. U.S.A. 107, 14194–14198 (2010). PubMed PMC

Rybenkov V. V., Herrera V., Petrushenko Z. M., Zhao H., MukBEF, a chromosomal organizer. J. Mol. Microbiol. Biotechnol. 24, 371–383 (2014). PubMed PMC

Nolivos S., et al. , MatP regulates the coordinated action of topoisomerase IV and MukBEF in chromosome segregation. Nat. Commun. 7, 10466 (2016). PubMed PMC

Dacks J. B., et al. , The changing view of eukaryogenesis—fossils, cells, lineages and how they all come together. J. Cell Sci. 129, 3695–3703 (2016). PubMed

O’Malley M. A., Leger M. M., Wideman J. G., Ruiz-Trillo I., Concepts of the last eukaryotic common ancestor. Nat. Ecol. Evol. 3, 338–344 (2019). PubMed

Koumandou V. L., et al. , Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol. 48, 373–396 (2013). PubMed PMC

Rout M. P., Field M. C., The evolution of organellar coat complexes and organization of the eukaryotic cell. Annu. Rev. Biochem. 86, 637–657 (2017). PubMed

Devos D., et al. , Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380 (2004). PubMed PMC

Zaremba-Niedzwiedzka K., et al. , Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017). PubMed

Fournier G. P., Poole A. M., A briefly argued case that Asgard archaea are part of the eukaryote tree. Front. Microbiol. 9, 1896 (2018). PubMed PMC

Da Cunha V., Gaia M., Gadelle D., Nasir A., Forterre P., Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet. 13, e1006810 (2017). PubMed PMC

Da Cunha V., Gaia M., Nasir A., Forterre P., Asgard archaea do not close the debate about the universal tree of life topology. PLoS Genet. 14, e1007215 (2018). PubMed PMC

Akiyoshi B., Gull K., Discovery of unconventional kinetochores in kinetoplastids. Cell 156, 1247–1258 (2014). PubMed PMC

D’Archivio S., Wickstead B., Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes. J. Cell Biol. 216, 379–391 (2017). PubMed PMC

Nerusheva O. O., Akiyoshi B., Divergent polo box domains underpin the unique kinetoplastid kinetochore. Open Biol. 6, 150206 (2016). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...