Egg Production in Poultry Farming Is Improved by Probiotic Bacteria

. 2019 ; 10 () : 1042. [epub] 20190524

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31178831

Antimicrobial resistance (AMR) is one of the most serious threats for human health in the near future. Livestock has played an important role in the appearance of antibiotic-resistant bacteria, intestinal dysbiosis in farming animals, or the spread of AMR among pathogenic bacteria of human concern. The development of alternatives like probiotics is focused on maintaining or improving production levels while diminishing these negative effects of antibiotics. To this end, we supplied the potential probiotic Enterococcus faecalis UGRA10 in the diet of laying hens at a final concentration of 108 Colony Forming Units per gram (CFU/g) of fodder. Its effects have been analyzed by: (i) investigating the response of the ileum and caecum microbiome; and (ii) analyzing the outcome on eggs production. During the second half of the experimental period (40 to 76 days), hens fed E. faecalis UGRA10 maintained egg production, while control animals dropped egg production. Supplementation diet with E. faecalis UGRA10 significantly increased ileum and caecum bacterial diversity (higher bacterial operational taxonomic unit richness and Faith's diversity index) of laying hens, with animals fed the same diet showing a higher similarity in microbial composition. These results point out to the beneficial effects of E. faecalis UGRA10 in egg production. Future experiments are necessary to unveil the underlying mechanisms that mediate the positive response of animals to this treatment.

Zobrazit více v PubMed

Adams D. C., Otarola-Castillo E. (2013). geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4 393–399. 10.1111/2041-210x.12035 DOI

Ahmed S. T., Islam M. M., Mun H.-S., Sim H.-J., Kim Y.-J., Yang C.-J. (2014). Effects of Bacillus amyloliquefaciens as a probiotic strain on growth performance, cecal microflora, and fecal noxious gas emissions of broiler chickens. Poultry Sci. 93 1963–1971. 10.3382/ps.2013-03718 PubMed DOI

Alfredson D. A., Korolik V. (2007). Antibiotic resistance and resistance mechanisms in Campylobacter jejuni and Campylobacter coli. FEMS Microbiol. Lett. 277 123–132. PubMed

Amir A., Mcdonald D., Navas-Molina J. A., Kopylova E., Morton J. T., Xu Z. Z., et al. (2017). Deblur rapidly resolves single-nucleotide community sequence patterns. Msystems 2 e00191-16. 10.1128/mSystems.00191-16 PubMed DOI PMC

Ananou S., Munoz A., Galvez A., Martinez-Bueno M., Maqueda L., Valdivia E. (2008). Optimization of enterocin AS-48 production on a whey-based substrate. Int. Dairy J. 18 923–927. 10.1016/j.idairyj.2008.02.001 DOI

Apata D. F. (2008). Growth performance, nutrient digestibility and immune response of broiler chicks fed diets supplemented with a culture of Lactobacillus bulgaricus. J. Sci. Food Agr. 88 1253–1258. 10.1002/jsfa.3214 DOI

Araneda Uson R. P. (2006). Percepción de calidad de huevo vista por un grupo de consumidores del Gran Santiago. Bachelor thesis Santiago de Chile (Chile): Universidad de Chile, Chile.

Are A., Aronsson L., Wang S., Greicius G., Lee Y. K., Gustafsson J. A., et al. (2008). Enterococcus faecalis from newborn babies regulate endogenous PPARγ activity and IL-10 levels in colonic epithelial cells. Proc. Natl. Acad. Sci. USA 105 1943–1948. 10.1073/pnas.0711734105 PubMed DOI PMC

Arslan M., Ozcan M., Matur E., Cotelioglu U., Ergul E. (2004). The effects of probiotic on leptin level, body, liver and abdominal fat weights during the rapid growth phase of broilers. Indian Vet. J. 81 416–420.

Awad W., Ghareeb K., Boehm J. (2008). Intestinal structure and function of broiler chickens on diets supplemented with a synbiotic containing Enterococcus faecium and oligosaccharides. Int. J. Mol. Sci. 9 2205–2216. 10.3390/ijms9112205 PubMed DOI PMC

Banerjee S., Sar A., Misra A., Pal S., Chakraborty A., Dam B. (2018). Increased productivity in poultry birds by sub-lethal dose of antibiotics is arbitrated by selective enrichment of gut microbiota, particularly short-chain fatty acid producers. Microbiology 164 142–153. 10.1099/mic.0.000597 PubMed DOI

Baños A. (2016). Aplicación de la Tecnología de las Barreras en el Desarrollo de AS-48 Como Bioconservante Alimentario. Estudio de Probiosis de una Cepa Productora de AS-48. Ph.D. dissertation Granada: University of Granada.

Beirão B. C. B., Ingberman M., Fávaro C, Jr., Mesa D., Bittencourt L. C., Fascina V. B., et al. (2018). Effect of an Enterococcus faecium probiotic on specific IgA following live Salmonella enteritidis vaccination of layer chickens. Avian. Pathol. 47 325–333. 10.1080/03079457.2018.1450487 PubMed DOI

Bejaei M. (2009). Attitudes and Preferences of Consumers/Purchasers Toward Different Types of Table Eggs. Master thesis Vancouver: University of British Columbia.

Bode C., Diedrich B., Muenster S., Hentschel V., Weisheit C., Rommelsheim K., et al. (2014). Antibiotics regulate the immune response in both presence and absence of lipopolysaccharide through modulation of Toll-like receptors, cytokine production and phagocytosis in vitro. Int. Immunopharmacol. 18 27–34. 10.1016/j.intimp.2013.10.025 PubMed DOI

Callaway T. R., Dowd S. E., Wolcott R. D., Sun Y., Mcreynolds J. L., Edrington T. S., et al. (2009). Evaluation of the bacterial diversity in cecal contents of laying hens fed various molting diets by using bacterial tag-encoded FLX amplicon pyrosequencing. Poultry Sci. 88 298–302. 10.3382/ps.2008-00222 PubMed DOI

Capita R., Alonso-Calleja C. (2013). Antibiotic-resistant bacteria: a challenge for the food industry. Crit. Rev. Food. Sci. Nutr. 53 11–48. 10.1080/10408398.2010.519837 PubMed DOI

Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7 335–336. PubMed PMC

Carramiñana J. J., Rota C., Agustin I., Herrera A. (2004). High prevalence of multiple resistance to antibiotics in Salmonella serovars isolated from a poultry slaughterhouse in Spain. Vet. Microbiol. 104 133–139. 10.1016/j.vetmic.2004.08.010 PubMed DOI

Cebrian R., Banos A., Valdivia E., Perez-Pulido R., Martínez-Bueno M., Maqueda M. (2012). Characterization of functional, safety, and probiotic properties of Enterococcus faecalis UGRA10, a new AS-48-producer strain. Food Microbiol. 30 59–67. 10.1016/j.fm.2011.12.002 PubMed DOI

Chao A. (1984). Nonparametric-estimation of the number of classes in a population. Scand. J. Stat. 11 265–270.

Choi J. H., Lee K., Kim D. W., Kil D. Y., Kim G. B., Cha C. J. (2018). Influence of dietary avilamycin on ileal and cecal microbiota in broiler chickens. Poultry Sci. 97 970–979. 10.3382/ps/pex360 PubMed DOI

Clemente J. C., Ursell L. K., Parfrey L. W., Knight R. (2012). The impact of the gut microbiota on human health: an integrative view. Cell 148 1258–1270. 10.1016/j.cell.2012.01.035 PubMed DOI PMC

Collyer M. L., Sekora D. J., Adams D. C. (2015). A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity 115 357–365. 10.1038/hdy.2014.75 PubMed DOI PMC

de Oliveira S. D., Flores F. S., Dos Santos L. R., Brandelli A. (2005). Antimicrobial resistance in Salmonella enteritidis strains isolated from broiler carcasses, food, human and poultry-related samples. Int. J. Food Microbiol. 97 297–305. 10.1016/j.ijfoodmicro.2004.04.022 PubMed DOI

de Vrese M., Schrezenmeir J. (2008). Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol. 2008 1–66. PubMed

Del Valle E. M. M. (2004). Cyclodextrins and their uses: a review. Process Biochem. 39 1033–1046. 10.1016/s0032-9592(03)00258-9 DOI

Derrien M., Vlieg J. E. V. H. (2015). Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 23 354–366. 10.1016/j.tim.2015.03.002 PubMed DOI

DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microb. 72 5069–5072. 10.1128/aem.03006-05 PubMed DOI PMC

Diarra M. S., Silversides F. G., Diarrassouba F., Pritchard J., Masson L., Brousseau R., et al. (2007). Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and Enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Escherichia coli isolates. Appl. Environ. Microb. 73 6566–6576. 10.1128/aem.01086-07 PubMed DOI PMC

Diarrassouba F., Diarra M. S., Bach S., Delaquis P., Pritcrard J., Topp E., et al. (2007). Antibiotic resistance and virulence genes in commensal Escherichia coli and Salmonella isolates from commercial broiler chicken farmst. J. Food Protect. 70 1316–1327. 10.4315/0362-028x-70.6.1316 PubMed DOI

Dibner J. J., Richards J. D. (2005). Antibiotic growth promoters in agriculture: history and mode of action. Poultry Sci. 84 634–643. 10.1093/ps/84.4.634 PubMed DOI

European Commission (1998). Commission Regulation (EC) No 98/1998 of 20 July 1998 Concerning the Protection of Animals Kept for Farming Purposes. Brussels: Official Journal of European Union.

European Commission (2003). Commision Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition. Brussels: Official Journal of European Union.

European Commission (2005). Regulation (EC) No 183/2005 of the European Parliament and of the Council of 12 January 2005 Laying Down Requirements for Feed Hygiene (Text with EEA relevance). Brussels: Official Journal of European Union.

European Commission (2008). Commission Regulation (EC) No 589/2008 of 23 June 2008 Laying Down Detailed Rules for Implementing Council Regulation (EC) No 1234/2007 as Regards Marketing Standards for Eggs. Brussels: Official Journal of European Union.

European Commission (2010). Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Brussels: Official Journal of European Union.

Faith D. P., Baker A. M. (2006). Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges. Evol. Bioinform. 2 121–128. PubMed PMC

Fenimore A., Martin L., Lappin M. R. (2017). Evaluation of metronidazole with and without Enterococcus faecium SF68 in shelter dogs with diarrhea. Top. Companion Anim. Med. 32 100–103. 10.1053/j.tcam.2017.11.001 PubMed DOI

Ferket P. R. (2004). “Alternatives to antibiotics in poultry production: responses, practical experience and recommendations,” in Nutritional Biotechnology in the Feed and Food Industries, eds Lyons T. P., Jacques K. A. (Nottinghan: Nottinghan University Press; ), 57–67.

Ferri M., Ranucci E., Romagnoli P., Giaccone V. (2017). Antimicrobial resistance: a global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 57 2857–2876. 10.1080/10408398.2015.1077192 PubMed DOI

Foligne B., Zoumpopoulou G., Dewulf J., Ben Younes A., Chareyre F., Sirard J.-C., et al. (2007). A key role of dendritic cells in probiotic functionality. PLoS One 2:e313. 10.1371/journal.pone.0000313 PubMed DOI PMC

Foulquie Moreno M. R., Callewaert R., Devreese B., Van Beeumen J., De Vuyst L. (2003). Isolation and biochemical characterisation of enterocins produced by enterococci from different sources. J. Appl. Microbiol. 94 214–229. 10.1046/j.1365-2672.2003.01823.x PubMed DOI

Foulquie-Moreno M. R., Sarantinopoulos P., Tsakalidou E., De Vuyst L. (2006). The role and application of enterococci in food and health. Int. J. Food Microbiol. 106 1–24. 10.1016/j.ijfoodmicro.2005.06.026 PubMed DOI

Franz C. M., Huch M., Abriouel H., Holzapfel W., Galvez A. (2011). Enterococci as probiotics and their implications in food safety. Int. J. Food Microbiol. 151 125–140. 10.1016/j.ijfoodmicro.2011.08.014 PubMed DOI

Franz C. M., Stiles M. E., Schleifer K. H., Holzapfel W. H. (2003). Enterococci in foods - a conundrum for food safety. Int. J. Food Microbiol. 88 105–122. 10.1016/s0168-1605(03)00174-0 PubMed DOI

Fuller R. (1989). Probiotics in man and animals. J. Appl. Bacteriol. 66 365–378. 10.1111/j.1365-2672.1989.tb05105.x PubMed DOI

Gadde U. D., Oh S., Lillehoj H. S., Lillehoj E. P. (2018). Antibiotic growth promoters virginiamycin and bacitracin methylene disalicylate alter the chicken intestinal metabolome. Sci. Rep. 8:3592. 10.1038/s41598-018-22004-6 PubMed DOI PMC

Gaggia F., Mattarelli P., Biavati B. (2010). Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 141 S15–S28. 10.1016/j.ijfoodmicro.2010.02.031 PubMed DOI

Gilchrist M. J., Greko C., Wallinga D. B., Beran G. W., Riley D. G., Thorne P. S. (2007). The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ. Health Persp. 115 313–316. 10.1289/ehp.8837 PubMed DOI PMC

Griggs J. P., Jacob J. P. (2005). Alternatives to antibiotics for organic poultry production. J. Appl. Poultry Res. 14 750–756. 10.1093/japr/14.4.750 DOI

Gustafson R. H., Bowen R. E. (1997). Antibiotic use in animal agriculture. J. Appl. Microbiol. 83 531–541. 10.1046/j.1365-2672.1997.00280.x PubMed DOI

Gyles C. L. (2008). Antimicrobial resistance in selected bacteria from poultry. Anim. Health Res. Rev. 9 149–158. 10.1017/S1466252308001552 PubMed DOI

Habermann W., Zimmermann K., Skarabis H., Kunze R., Rusch V. (2001). Influence of a bacterial immunostimulant (human Enterococcus faecalis bacteria) on the recurrence of relapses in patients with chronic bronchitis. Arzneimittel-Forsch. 51 931–937. PubMed

Han W., Zhang X. L., Wang D. W., Li L. Y., Liu G. L., Li A. K., et al. (2013). Effects of microencapsulated Enterococcus faecalis CG1.0007 on growth performance, antioxidation activity, and intestinal microbiota in broiler chickens. J. Anim. Sci. 91 4374–4382. 10.2527/jas.2012-5956 PubMed DOI

Hecker M. T., Aron D. C., Patel N. P., Lehmann M. K., Donskey C. J. (2003). Unnecessary use of antimicrobials in hospitalized patients - current patterns of misuse with an emphasis on the antianaerobic spectrum of activity. Arch. Iintern. Med. 163 972–978. PubMed

Huttenhower C., Gevers D., Knight R., Abubucker S., Badger J. H., Chinwalla A. T., et al. (2012). Structure, function and diversity of the healthy human microbiome. Nature 486 207–214. 10.1038/nature11234 PubMed DOI PMC

Janssen S., McDonald D., Gonzalez A., Navas-Molina J. A., Jiang L., Xu Z. Z., et al. (2018). Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems 3:e00021-18. 10.1128/mSystems.00021-18 PubMed DOI PMC

Joerger R. D. (2003). Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poultry Sci. 82 640–647. 10.1093/ps/82.4.640 PubMed DOI

Kabir S. M. L. (2009). The role of probiotics in the poultry industry. Int. J. Mol. Sci. 10 3531–3546. 10.3390/ijms10083531 PubMed DOI PMC

Krieg N. R., Holt J. G. (1984). Bergey’s Manual of Systematic Bacteriology. Baltimore, MD: Williams & Wilkins.

Lee K.-W., Li G., Lillehoj H. S., Lee S.-H., Jang S. I., Babu U. S., et al. (2011). Bacillus subtilis-based direct-fed microbials augment macrophage function in broiler chickens. Res. Vet. Sci. 91 E87–E91. 10.1016/j.rvsc.2011.01.018 PubMed DOI

Levy S. B., Marshall B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10 S122–S129. PubMed

Ley R. E., Backhed F., Turnbaugh P., Lozupone C. A., Knight R. D., Gordon J. I. (2005). Obesity alters gut microbial ecology. PNAS 102 11070–11075. PubMed PMC

Lokhande A., Ingale S. L., Lee S. H., Kim J. S., Lohakare J. D., Chae B. J., et al. (2013). The effects of Rhodobacter capsulatus KCTC-2583 on cholesterol metabolism, egg production and quality parameters during the late laying periods in hens. Asian Austral. J. Anim. 26 831–837. 10.5713/ajas.2012.12559 PubMed DOI PMC

Lozupone C., Knight R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microb. 71 8228–8235. 10.1128/aem.71.12.8228-8235.2005 PubMed DOI PMC

Lu J. R., Idris U., Harmon B., Hofacre C., Maurer J. J., Lee M. D. (2003). Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl. Environ. Microb. 69 6816–6824. 10.1128/aem.69.11.6816-6824.2003 PubMed DOI PMC

Luo J., Zheng A., Meng K., Chang W., Bai Y., Li K., et al. (2013). Proteome changes in the intestinal mucosa of broiler (Gallus gallus) activated by probiotic Enterococcus faecium. J. Proteom. 91 226–241. 10.1016/j.jprot.2013.07.017 PubMed DOI

Marshall B. M., Levy S. B. (2011). Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev. 24 718–733. 10.1128/CMR.00002-11 PubMed DOI PMC

Martín-Platero A. M., Valdivia E., Maqueda M., Martínez-Bueno M. (2007). Fast, convenient, and economical method for isolating genomic DNA from lactic acid bacteria using a modification of the protein salting-out procedure. Anal. Biochem. 366 102–104. 10.1016/j.ab.2007.03.010 PubMed DOI

Martín-Platero A. M., Valdivia E., Maqueda M., Martínez-Bueno M. (2009). Characterization and safety evaluation of enterococci isolated from Spanish goats’ milk cheeses. Int. J. Food Microbiol. 132 24–32. 10.1016/j.ijfoodmicro.2009.03.010 PubMed DOI

Martín-Platero A. M., Valdivia E., Ruiz-Rodríguez M., Soler J. J., Martín-Vivaldi M., Maqueda M., et al. (2006). Characterization of antimicrobial substances produced by Enterococcus faecalis MRR 10-3, isolated from the uropygial gland of the hoopoe (Upupa epops). Appl. Environ. Microb. 72 4245–4249. 10.1128/aem.02940-05 PubMed DOI PMC

McEwen S. A., Fedorka-Cray P. J. (2002). Antimicrobial use and resistance in animals. Clin. Actual Pharm. Biol. 34 S93–S106. PubMed

Miles R. D., Butcher G. D., Henry P. R., Littell R. C. (2006). Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology. Poultry Sci. 85 476–485. 10.1093/ps/85.3.476 PubMed DOI

Nayebpor M., Farhomand P., Hashemi A. (2007). Effects of different levels of direct fed microbial (Primalac) on growth performance and humoral immune response in broiler chickens. J. Anim. Vet. Adv. 6 1308–1313.

Nelson J. M., Chiller T. M., Powers J. H., Angulo F. J. (2007). Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story. Clin. Infect. Dis. 44 977–980. 10.1086/512369 PubMed DOI

Niewold T. A. (2007). The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poultry Sci. 86 605–609. 10.1093/ps/86.4.605 PubMed DOI

Nordentoft S., Molbak L., Bjerrum L., De Vylder J., Van Immerseel F., Pedersen K. (2011). The influence of the cage system and colonisation of Salmonella enteritidis on the microbial gut flora of laying hens studied by T-RFLP and 454 pyrosequencing. BMC Microbiol. 11:187. 10.1186/1471-2180-11-187 PubMed DOI PMC

Ogier J.-C., Serror P. (2008). Safety assessment of dairy microorganisms: the Enterococcus genus. Int. J. Food Microbiol. 126 291–301. 10.1016/j.ijfoodmicro.2007.08.017 PubMed DOI

Oh J. K., Pajarillo E. A. B., Chae J. P., Kim I. H., Kang D.-K. (2017). Protective effects of Bacillus subtilis against Salmonella infection in the microbiome of Hy-Line Brown layers. Asian Austral J. Anim. 30 1332–1339. 10.5713/ajas.17.0063 PubMed DOI PMC

Oksanen J., Blanchet F. G., Kindt R., Legendre P., Minchin P. R., O’hara R. B., et al. (2016). vegan: Community Ecology Package. R Package Version. Available at: http://cran.r-project.org (accessed December 30, 2018).

Osman K. M., Kappell A. D., Elhadidy M., Elmougy F., Abd El-Ghany W. A., Orabi A., et al. (2018). Poultry hatcheries as potential reservoirs for antimicrobial-resistant Escherichia coli: a risk to public health and food safety. Sci. Rep. 8:5859. 10.1038/s41598-018-23962-7 PubMed DOI PMC

Park J. W., Jeong J. S., Lee S. I., Kim I. H. (2016). Effect of dietary supplementation with a probiotic (Enterococcus faecium) on production performance, excreta microflora, ammonia emission, and nutrient utilization in ISA brown laying hens. Poultry Sci. 95 2829–2835. 10.3382/ps/pew241 PubMed DOI

Patterson J. A., Burkholder K. M. (2003). Application of prebiotics and probiotics in poultry production. Poultry Sci. 82 627–631. 10.1093/ps/82.4.627 PubMed DOI

Reichmann Bellino J., Arias Nieto W. B. (2016). Caracterización de Mercado Para la Incorporación de Comercialización de Huevo por Peso en Honduras. Tegucigalpa: Escuela Agrícola Panamericana.

Ribeiro V., Jr., Albino L. F. T., Rostagno H. S., Barreto S. L. T., Hannas M. I., Harrington D., et al. (2014). Effects of the dietary supplementation of Bacillus subtilis levels on performance, egg quality and excreta moisture of layers. Anim. Feed Sci. Tech. 195 142–146. 10.1016/j.anifeedsci.2014.06.001 DOI

Ruiz-Rodríguez M., Martínez-Bueno M., Martín-Vivaldi M., Valdivia E., Soler J. J. (2013). Bacteriocins with a broader antimicrobial spectrum prevail in enterococcal symbionts isolated from the hoopoe’s uropygial gland. FEMS Microbiol. Ecol. 85 495–502. 10.1111/1574-6941.12138 PubMed DOI

Saelim K., Sohsomboon N., Kaewsuwan S., Maneerat S. (2012). Probiotic properties of Enterococcus faecium CE5-1 producing a bacteriocin-like substance and its antagonistic effect against antibiotic-resistant enterococci in vitro. Czech J. Anim. Sci. 57 529–539. 10.17221/6386-cjas DOI

Sakai Y., Tsukahara T., Bukawa W., Matsubara N., Ushida K. (2006). Cell preparation of Enterococcus faecalis strain EC-12 prevents vancomycin-resistant enterococci colonization in the cecum of newly hatched chicks. Poultry Sci. 85 273–277. 10.1093/ps/85.2.273 PubMed DOI

Salim H. M., Kang H. K., Akter N., Kim D. W., Kim J. H., Kim M. J., et al. (2013). Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens. Poultry Sci. 92 2084–2090. 10.3382/ps.2012-02947 PubMed DOI

Schleifer K. H., Kilpper-Bälz R. (1984). Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. Rev. as. Enterococcus faecalis comb. nov. and Enterococcus faecium cob. nov. Int. J. Syst. Bacteriol. 34 31–34. 10.1099/00207713-34-1-31 DOI

Singer R. S., Hofacre C. L. (2006). Potential impacts of antibiotic use in poultry production. Avian. Dis. 50 161–172. 10.1637/7569-033106r.1 PubMed DOI

Singh S., Yadav A. S., Singh S. M., Bharti P. (2010). Prevalence of Salmonella in chicken eggs collected from poultry farms and marketing channels and their antimicrobial resistance. Food Res. Int. 43 2027–2030. 10.1016/j.foodres.2010.06.001 DOI

Souza R. (2008). La Comercialización de los Huevos. Selecciones Avicolas: Reus

Tagg J. R., Mcgiven A. R. (1971). Assay system for bacteriocins. Appl. Microbiol. 21:943. PubMed PMC

Teuber M. (2001). Veterinary use and antibiotic resistance. Curr. Opin. Microbiol. 4 493–499. 10.1016/s1369-5274(00)00241-1 PubMed DOI

Thibodeau A., Topp E., Diarra M. S., Houde A., Guevremont E., Quessy S., et al. (2007). Antibiotic resistance in Escherichia coli and Enterococcus spp. obtained from commercial broiler chickens receiving growth-promoting doses of bacitracin or virginiamycin. Can. J. Vet. Res. 72 129–136. PubMed PMC

Thomas C. M., Versalovic J. (2010). Probiotics-host communication: modulation of signaling pathways in the intestine. Gut Microbes 1 148–163. 10.4161/gmic.1.3.11712 PubMed DOI PMC

Torres-Henderson C., Summers S., Suchodolski J., Lappin M. R. (2017). Effect of Enterococcus Faecium strain SF68 on gastrointestinal signs and fecal microbiome in cats administered amoxicillin-clavulanate. Top. Companion Anim. Med. 32 104–108. 10.1053/j.tcam.2017.11.002 PubMed DOI

Trmcic A., Obermajer T., Majhenic A. C., Matijasic B. B., Rogelj I. (2011). Competitive advantage of bacteriocinogenic strains within lactic acid bacteria consortium of raw milk cheese. Mljekarstvo 61 26–32.

U.S. FDA (2017). FDA Reminds Retail Establishments of Upcoming Changes to the Use of Antibiotics in Food Animals. Silver Spring, MD: U.S. Food and Drug Administration.

Van Immerseel F., De Buck J., Pasmans F., Huyghebaert G., Haesebrouck F., Ducatelle R. (2004). Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian. Pathol. 33 537–549. 10.1080/03079450400013162 PubMed DOI

Vazquez-Baeza Y., Pirrung M., Gonzalez A., Knight R. (2013). EMPeror: a tool for visualizing high-throughput microbial community data. GigaScience 2 16–16. 10.1186/2047-217X-2-16 PubMed DOI PMC

Velasquez C. G., Macklin K. S., Kumar S., Bailey M., Ebner P. E., Oliver H. F., et al. (2018). Prevalence and antimicrobial resistance patterns of Salmonella isolated from poultry farms in southeastern United States. Poultry Sci. 97 2144–2152. 10.3382/ps/pex449 PubMed DOI

Wang Y., Du W., Lei K., Wang B., Wang Y., Zhou Y., et al. (2017). Effects of dietary Bacillus licheniformis on gut physical barrier, immunity, and reproductive hormones of laying hens. Probiotics Antimicrob. Proteins 9 292–299. 10.1007/s12602-017-9252-3 PubMed DOI

Waters S. M., Murphy R. A., Power R. F. G. (2005). Assessment of the effects of nurmi-type cultures and a defined probiotic preparation on a Salmonella typhimurium 29E challenge in vivo. J. Food Protect. 68 1222–1227. 10.4315/0362-028x-68.6.1222 PubMed DOI

Wealleans A. L., Li W., Romero L. F., Mathis G., Lumpkins B. (2018). Performance and cost-benefit improvements following supplementation with a combination of direct-fed microbials and enzymes to broiler chickens raised with or without ionophores. J. Appl. Poultry Res. 27 23–32. 10.3382/japr/pfx036 DOI

Wegener H. C. (2003). Antibiotics in animal feed and their role in resistance development. Curr. Opin. Microbiol. 6 439–445. 10.1016/j.mib.2003.09.009 PubMed DOI

Whitaker R. H. (1972). Evolution and measurement of species diversity. Taxon 21 213–251.

World Health Organization (2018). Antimicrobial Resistance. Geneva: World Health Organization.

Yang J. H., Bhargava P., Mccloskey D., Mao N., Palsson B. O., Collins J. J. (2017). Antibiotic-induced changes to the host metabolic environment inhibit drug efficacy and alter immune function. Cell Host Microbe 22 757–765.e3. 10.1016/j.chom.2017.10.020 PubMed DOI PMC

Zakowska-Biemans S., Tekien A. (2017). Free range, organic? polish consumers preferences regarding information on farming system and nutritional enhancement of eggs: a discrete choice based experiment. Sustainability 9:1999 10.3390/su9111999 DOI

Zhang J. L., Xie Q. M., Ji J., Yang W. H., Wu Y. B., Li C., et al. (2012). Different combinations of probiotics improve the production performance, egg quality, and immune response of layer hens. Poultry Sci. 91 2755–2760. 10.3382/ps.2012-02339 PubMed DOI

Zhao X., Guo Y., Guo S., Tan J. (2013). Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Appl. Microbiol. Biotechnol. 97 6477–6488. 10.1007/s00253-013-4970-2 PubMed DOI

Zheng A., Luo J., Meng K., Li J., Bryden W. L., Chang W., et al. (2016). Probiotic (Enterococcus faecium) induced responses of the hepatic proteome improves metabolic efficiency of broiler chickens (Gallus gallus). BMC Genom. 17:89. 10.1186/s12864-016-2371-5 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...