Functionally Significant Features in the 5' Untranslated Region of the ABCA1 Gene and Their Comparison in Vertebrates

. 2019 Jun 21 ; 8 (6) : . [epub] 20190621

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31234415

Single nucleotide polymorphisms located in 5' untranslated regions (5'UTRs) can regulate gene expression and have clinical impact. Recognition of functionally significant sequences within 5'UTRs is crucial in next-generation sequencing applications. Furthermore, information about the behavior of 5'UTRs during gene evolution is scarce. Using the example of the ATP-binding cassette transporter A1 (ABCA1) gene (Tangier disease), we describe our algorithm for functionally significant sequence finding. 5'UTR features (upstream start and stop codons, open reading frames (ORFs), GC content, motifs, and secondary structures) were studied using freely available bioinformatics tools in 55 vertebrate orthologous genes obtained from Ensembl and UCSC. The most conserved sequences were suggested as hot spots. Exon and intron enhancers and silencers (sc35, ighg2 cgamma2, ctnt, gh-1, and fibronectin eda exon), transcription factors (TFIIA, TATA, NFAT1, NFAT4, and HOXA13), some of them cancer related, and microRNA (hsa-miR-4474-3p) were localized to these regions. An upstream ORF, overlapping with the main ORF in primates and possibly coding for a small bioactive peptide, was also detected. Moreover, we showed several features of 5'UTRs, such as GC content variation, hairpin structure conservation or 5'UTR segmentation, which are interesting from a phylogenetic point of view and can stimulate further evolutionary oriented research.

Zobrazit více v PubMed

Guo Y., Long J., He J., Li C., Cai Q., Shu X., Zheng W., Li C. Exome sequencing generates high quality data in non-target regions. BMC Genom. 2012;13:194. doi: 10.1186/1471-2164-13-194. PubMed DOI PMC

Dean M., Rzhetsky A., Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11:1156–1166. doi: 10.1101/gr.GR-1649R. PubMed DOI

Aye I., Singh A., Keelan J. Transport of lipids by ABC proteins: Interactions and implications for cellular toxicity, viability and function. Chem. Biol. Interact. 2009;180:327–339. doi: 10.1016/j.cbi.2009.04.012. PubMed DOI

Nürenberg E., Tampé R. Tying up loose ends: Ribosome recycling in eukaryotes and archaea. Trends Biochem. Sci. 2013;38:64–74. doi: 10.1016/j.tibs.2012.11.003. PubMed DOI

Iida A., Saito S., Sekine A., Kitamura Y., Kondo K., Mishima C., Osawa S., Harigae S., Nakamura Y. High-density single-nucleotide polymorphism (SNP) map of the 150-kb region corresponding to the human ATP-binding cassette transporter A1 (ABCA1) gene. J. Hum. 2001;46:522–528. doi: 10.1007/s100380170034. PubMed DOI

Phillips M. Is ABCA1 a lipid transfer protein? J. Lipid Res. 2018;59:749–763. doi: 10.1194/jlr.R082313. PubMed DOI PMC

Araujo P., Yoon K., Ko D., Smith A., Qiao M., Suresh U., Burns S., Penalva L. Before it gets started: Regulating translation at the 5′ UTR. Comp. Func. Genom. 2012;2012:1–8. doi: 10.1155/2012/475731. PubMed DOI PMC

Haimov O., Sinvani H., Dikstein R. Cap-dependent, scanning-free translation initiation mechanisms. BBA-Gene Regul. Mech. 2015;1849:1313–1318. doi: 10.1016/j.bbagrm.2015.09.006. PubMed DOI

Jackson R., Hellen C., Pestova T. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 2010;11:113–127. doi: 10.1038/nrm2838. PubMed DOI PMC

Rojas-Duran M., Gilbert W. Alternative transcription start site selection leads to large differences in translation activity in yeast. RNA. 2012;18:2299–2305. doi: 10.1261/rna.035865.112. PubMed DOI PMC

Mignone F., Gissi C., Liuni S., Pesole G. Untranslated regions of mRNAs. Genome Biol. 2002;3 doi: 10.1186/gb-2002-3-3-reviews0004. PubMed DOI PMC

Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene. 2005;361:13–37. doi: 10.1016/j.gene.2005.06.037. PubMed DOI

Leppek K., Das R., Barna M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 2017;19:158–174. doi: 10.1038/nrm.2017.103. PubMed DOI PMC

Pezeshkpoor B., Berkemeier A., Czogalla K., Oldenburg J., El-Maarri O. Evidence of pathogenicity of a mutation in 3′ untranslated region causing mild haemophilia A. Haemophilia. 2016;22:598–603. doi: 10.1111/hae.12923. PubMed DOI

Piraino S., Furney S. Beyond the exome: The role of non-coding somatic mutations in cancer. Ann. Oncol. 2015;27:240–248. doi: 10.1093/annonc/mdv561. PubMed DOI

Cenik C., Derti A., Mellor J., Berriz G., Roth F. Genome-wide functional analysis of human 5′ untranslated region introns. Genome Biol. 2010;11:R29. doi: 10.1186/gb-2010-11-3-r29. PubMed DOI PMC

Bicknell A., Cenik C., Chua H., Roth F., Moore M. Introns in UTRs: Why we should stop ignoring them? Bioessays. 2012;34:1025–1034. doi: 10.1002/bies.201200073. PubMed DOI

Jo B., Choi S. Introns: The functional benefits of introns in genomes. Genom. Inform. 2015;13:112. doi: 10.5808/GI.2015.13.4.112. PubMed DOI PMC

Aken B., Achuthan P., Akanni W., Amode M., Bernsdorff F., Bhai J., Billis K., Carvalho-Silva D., Cummins C., Clapham P., et al. Ensembl 2017. Nucleic Acids Res. 2016;45:D635–D642. doi: 10.1093/nar/gkw1104. PubMed DOI PMC

Rodriguez J., Rodriguez-Rivas J., Di Domenico T., Vázquez J., Valencia A., Tress M. APPRIS 2017: Principal isoforms for multiple gene sets. Nucleic Acids Res. 2017;46:D213–D217. doi: 10.1093/nar/gkx997. PubMed DOI PMC

Vilella A., Severin J., Ureta-Vidal A., Heng L., Durbin R., Birney E. EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 2008;19:327–335. doi: 10.1101/gr.073585.107. PubMed DOI PMC

Haubold B., Wiehe T. Comparative genomics: Methods and applications. Naturwissenschaften. 2004;91:405–421. doi: 10.1007/s00114-004-0542-8. PubMed DOI

Waterhouse A., Procter J., Martin D., Clamp M., Barton G. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–1191. doi: 10.1093/bioinformatics/btp033. PubMed DOI PMC

Kent W., Sugnet C., Furey T., Roskin K., Pringle T., Zahler A., Haussler A. The human genome browser at UCSC. Genome Res. 2002;12:996–1006. doi: 10.1101/gr.229102. PubMed DOI PMC

Skarshewski A., Stanton-Cook M., Huber T., Al Mansoori S., Smith R., Beatson S., Rothnagel J. uPEPperoni: An online tool for upstream open reading frame location and analysis of transcript conservation. BMC Bioinform. 2014;15:36. doi: 10.1186/1471-2105-15-36. PubMed DOI PMC

Tikole S., Sankararamakrishnan R. Prediction of translation initiation sites in human mRNA sequences with AUG start codon in weak Kozak context: A neural network approach. Biochem. Biophys. Res. Commun. 2008;369:1166–1168. doi: 10.1016/j.bbrc.2008.03.008. PubMed DOI

Grillo G., Turi A., Licciulli F., Mignone F., Liuni S., Banfi S., Gennarino V., Horner D., Pavesi G., Picardi E., et al. UTRdb and UTRsite (RELEASE 2010): A collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res. 2010;38:D75–D80. doi: 10.1093/nar/gkp902. PubMed DOI PMC

Chang T., Huang H., Hsu J., Weng S., Horng J., Huang H. An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinform. 2013;14:S4 PubMed PMC

Bailey T., Bodén M., Buske F., Frith M., Grant Ch., Clementi L., Ren J., Li W., Noble W. MEME Suite: Tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–W208. doi: 10.1093/nar/gkp335. PubMed DOI PMC

Pesole G., Grillo G., Larizza A., Liuni S. The untranslated regions of eukaryotic mRNAs: Structure, function, evolution and bioinformatic tools for their analysis. Brief. Bioinform. 2000;1:236–249. doi: 10.1093/bib/1.3.236. PubMed DOI

Pesole G., Mignone F., Gissi C., Grillo G., Licciulli F., Liuni S. Structural and functional features of eukaryotic mRNA untranslated regions. Gene. 2001;276:73–81. doi: 10.1016/S0378-1119(01)00674-6. PubMed DOI

Mazumder B., Seshadri V., Fox P. Translational control by the 3′-UTR: The ends specify the means. Trends Biochem. Sci. 2003;28:91–98. doi: 10.1016/S0968-0004(03)00002-1. PubMed DOI

Lynch M., Conery J. The origins of genome complexity. Science. 2003;302:1401–1404. doi: 10.1126/science.1089370. PubMed DOI

Lynch M., Scofield D., Hong X. The evolution of transcription-initiation sites. Mol. Biol. Evol. 2005;22:1137–1146. doi: 10.1093/molbev/msi100. PubMed DOI

Charlesworth B., Barton N. Genome size: Does bigger mean worse? Curr. Biol. 2004;14:R233–R235. doi: 10.1016/j.cub.2004.02.054. PubMed DOI

Daubin V., Moran N. Comment on “The origins of genome complexity”. Science. 2004;306:978. doi: 10.1126/science.1098469. PubMed DOI

Reuter M., Engelstadter J., Fontanillas P., Hurst L. A Test of the null model for 5′ UTR evolution based on GC content. Mol. Biol. Evol. 2008;25:801–804. doi: 10.1093/molbev/msn044. PubMed DOI

Vinogradov A., Anatskaya O. Organismal complexity, cell differentiation and gene expression: Human over mouse. Nucleic Acids Res. 2007;35:6350–6356. doi: 10.1093/nar/gkm723. PubMed DOI PMC

Whitney K., Garland T. Did genetic drift drive increases in genome complexity? PLoS Genet. 2010;6:e1001080. doi: 10.1371/journal.pgen.1001080. PubMed DOI PMC

Chen C., Lin H., Pan C., Chen F. The plausible reason why the length of 5′ untranslated region is unrelated to organismal complexity. BMC Res. Notes. 2011;4:312. doi: 10.1186/1756-0500-4-312. PubMed DOI PMC

Chen C., Lin H., Pan C., Chen F. The genomic features that affect the lengths of 5′ untranslated regions in multicellular eukaryotes. BMC Bioinform. 2011;12:S3. doi: 10.1186/1471-2105-12-S9-S3. PubMed DOI PMC

Lim C., Wardell S., Kleffmann T., Brown C. The exon-intron gene structure upstream of the initiation codon predicts translation efficiency. Nucleic Acids Res. 2018;46:4575–4591. doi: 10.1093/nar/gky282. PubMed DOI PMC

Hong X., Scofield D., Lynch M. Intron size, abundance, and distribution within untranslated regions of genes. Mol. Biol. Evol. 2006;23:2392–2404. doi: 10.1093/molbev/msl111. PubMed DOI

Deutsch M., Long M. Intron—Exon structures of eukaryotic model organisms. Nucleic Acids Res. 1999;27:3219–3228. PubMed PMC

Vinogradov A. Intron—Genome size relationship on a large evolutionary scale. J. Mol. Evol. 1999;49:376–384. doi: 10.1007/PL00006561. PubMed DOI

Larizza A., Makalowski W., Pesole G., Saccone C. Evolutionary dynamics of mammalian mRNA untranslated regions by comparative analysis of orthologous human, artiodactyl and rodent gene pairs. Comput. Chem. 2002;26:479–490. doi: 10.1016/S0097-8485(02)00009-8. PubMed DOI

Shabalina S., Ogurtsov A., Rogozin I., Koonin E., Lipman D. Comparative analysis of orthologous eukaryotic mRNAs: Potential hidden functional signals. Nucleic Acids Res. 2004;32:1774–1782. doi: 10.1093/nar/gkh313. PubMed DOI PMC

Vinogradov A. “Genome design” model: Evidence from conserved intronic sequence in human-mouse comparison. Genome Res. 2006;16:347–354. doi: 10.1101/gr.4318206. PubMed DOI PMC

Pozzoli U., Menozzi G., Comi G., Cagliani R., Bresolin N., Sironi M. Intron size in mammals: Complexity comes to terms with economy. Trends Genet. 2007;23:20–24. doi: 10.1016/j.tig.2006.10.003. PubMed DOI

LaConte L., Mukherjee K. Structural constraints and functional divergences in CASK evolution. Biochem. Soc. Trans. 2013;41:1017–1022. doi: 10.1042/BST20130061. PubMed DOI

Kozak M. Pushing the limits of the scanning mechanism for initiation of translation. Gene. 2002;299:1–34. doi: 10.1016/S0378-1119(02)01056-9. PubMed DOI PMC

Rogozin I., Kochetov A., Kondrashov F., Koonin E., Milanesi L. Presence of ATG triplets in 5′ untranslated regions of eukaryotic cDNAs correlates with a weak’ context of the start codon. Bioinformatics. 2001;17:890–900. doi: 10.1093/bioinformatics/17.10.890. PubMed DOI

Iacono M., Mignone F., Pesole G. uAUG and uORFs in human and rodent 5′untranslated mRNAs. Gene. 2005;349:97–105. doi: 10.1016/j.gene.2004.11.041. PubMed DOI

Calvo S., Pagliarini D., Mootha V. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl. Acad. Sci. USA. 2009;106:7507–7512. doi: 10.1073/pnas.0810916106. PubMed DOI PMC

Churbanov A., Rogozin I., Babenko V., Ali H., Koonin E. Evolutionary conservation suggests a regulatory function of AUG triplets in 5′-UTRs of eukaryotic genes. Nucleic Acids Res. 2005;33:5512–5520. doi: 10.1093/nar/gki847. PubMed DOI PMC

Matsui M., Yachie N., Okada Y., Saito R., Tomita M. Bioinformatic analysis of post-transcriptional regulation by uORF in human and mouse. FEBS Lett. 2007;581:4184–4188. doi: 10.1016/j.febslet.2007.07.057. PubMed DOI

Zhou W., Song W. Leaky scanning and reinitiation regulate BACE1 gene expression. Mol. Cell Biol. 2006;26:3353–3364. doi: 10.1128/MCB.26.9.3353-3364.2006. PubMed DOI PMC

Kochetov A. Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. Bioessays. 2008;30:683–691. doi: 10.1002/bies.20771. PubMed DOI

Kozak M. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol. Cell Biol. 1987;7:3438–3445. doi: 10.1128/MCB.7.10.3438. PubMed DOI PMC

Luukkonen B., Tan W., Schwartz S. Efficiency of reinitiation of translation on human immunodeficiency virus type 1 mRNAs is determined by the length of the upstream open reading frame and by intercistronic distance. J. Virol. 1995;69:4086–4094. PubMed PMC

Kochetov A., Ahmad S., Ivanisenko V., Volkova O., Kolchanov N., Sarai A. uORFs, reinitiation and alternative translation start sites in human mRNAs. FEBS Lett. 2008;582:1293–1297. doi: 10.1016/j.febslet.2008.03.014. PubMed DOI

Wethmar K., Smink J., Leutz A. Upstream open reading frames: Molecular switches in (patho)physiology. Bioessays. 2010;32:885–893. doi: 10.1002/bies.201000037. PubMed DOI PMC

Hsu M., Chen F. Selective constraint on the upstream open reading frames that overlap with coding sequences in animals. PLoS ONE. 2012;7:e48413. doi: 10.1371/journal.pone.0048413. PubMed DOI PMC

Barbosa C., Peixeiro I., Romão L. Gene expression regulation by upstream open reading frames and human disease. PLoS Genet. 2013;9:e1003529. doi: 10.1371/journal.pgen.1003529. PubMed DOI PMC

Somers J., Pöyry T., Willis A. A perspective on mammalian upstream open reading frame function. Int. J. Biochem. Cell Biol. 2013;45:1690–1700. doi: 10.1016/j.biocel.2013.04.020. PubMed DOI PMC

Andrews S., Rothnagel J. Emerging evidence for functional peptides encoded by short open reading frames. Nat. Rev. Genet. 2014;15:193–204. doi: 10.1038/nrg3520. PubMed DOI

Brunet M., Levesque S., Hunting D., Cohen A., Roucou X. Recognition of the polycistronic nature of human genes is critical to understanding the genotype-phenotype relationship. Genome Res. 2018;28:609–624. doi: 10.1101/gr.230938.117. PubMed DOI PMC

Bernardi G., Olofsson B., Filipski J., Zerial M., Salinas J., Cuny G., Meunier-Rotival M., Rodier F. The mosaic genome of warm-blooded vertebrates. Science. 1985;228:953–958. doi: 10.1126/science.4001930. PubMed DOI

Romiguier J., Ranwez V., Douzery E., Galtier N. Contrasting GC-content dynamics across 33 mammalian genomes: Relationship with life-history traits and chromosome sizes. Genome Res. 2010;20:1001–1009. doi: 10.1101/gr.104372.109. PubMed DOI PMC

Duret L., Semon M., Piganeau G., Mouchiroud D., Galtier N. Vanishing GC-rich isochores in mammalian genomes. Genetics. 2002;162:1837–1847. PubMed PMC

Gu J., Li W. Are GC-rich isochores vanishing in mammals? Gene. 2006;385:50–56. doi: 10.1016/j.gene.2006.03.026. PubMed DOI

Gupta K., Sari-Ak D., Haffke M., Trowitzsch S., Berger I. Zooming in on transcription preinitiation. J. Mol. Biol. 2016;428:2581–2591. doi: 10.1016/j.jmb.2016.04.003. PubMed DOI PMC

Mognol G., Carneiro F., Robbs B., Faget D., Viola J. Cell cycle and apoptosis regulation by NFAT transcription factors: New roles for an old player. Cell Death Dis. 2016;7:e2199. doi: 10.1038/cddis.2016.97. PubMed DOI PMC

Wen Y., Shu F., Chen Y., Chen Y., Lan Y., Duan X., Zhao S., Zeng G. The prognostic value of HOXA13 in solid tumors: A meta-analysis. Clin. Chim. Acta. 2018;483:64–68. doi: 10.1016/j.cca.2018.04.024. PubMed DOI

Xiong T., Xu G., Huang X., Lu K., Xie W., Yin K., Tu J. ATP-binding cassette transporter A1: A promising therapy target for prostate cancer. Mol. Clin. Oncol. 2018;8:9–14. doi: 10.3892/mco.2017.1506. PubMed DOI PMC

Kozak M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA. 1990;87:8301–8305. doi: 10.1073/pnas.87.21.8301. PubMed DOI PMC

Kochetov A., Palyanov A., Titov I., Grigorovich D., Sarai A., Kolchanov N. AUG_hairpin: Prediction of a downstream secondary structure influencing the recognition of a translation start site. BMC Bioinform. 2007;8:318. doi: 10.1186/1471-2105-8-318. PubMed DOI PMC

Faure G., Ogurtsov A., Shabalina S., Koonin E. Adaptation of mRNA structure to control protein folding. RNA Biol. 2017;14:1649–1654. doi: 10.1080/15476286.2017.1349047. PubMed DOI PMC

Ringner M., Krogh M. Folding free energies of 5′-UTRs impact post-transcriptional regulation on a genomic scale in yeast. PLoS Comput. Biol. 2005;1:e72. doi: 10.1371/journal.pcbi.0010072. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...