Functionally Significant Features in the 5' Untranslated Region of the ABCA1 Gene and Their Comparison in Vertebrates
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
31234415
PubMed Central
PMC6627321
DOI
10.3390/cells8060623
PII: cells8060623
Knihovny.cz E-zdroje
- Klíčová slova
- 5′ untranslated region, ABCA1, bioinformatics, gene regulation, single nucleotide polymorphism,
- MeSH
- 5' nepřekládaná oblast genetika MeSH
- ABCA1 protein chemie genetika MeSH
- anotace sekvence MeSH
- fylogeneze MeSH
- introny genetika MeSH
- konformace nukleové kyseliny MeSH
- konzervovaná sekvence genetika MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- nukleotidové motivy genetika MeSH
- obratlovci genetika MeSH
- otevřené čtecí rámce genetika MeSH
- savci genetika MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sestřih RNA genetika MeSH
- zastoupení bazí genetika MeSH
- zesilovače transkripce genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- 5' nepřekládaná oblast MeSH
- ABCA1 protein MeSH
- messenger RNA MeSH
Single nucleotide polymorphisms located in 5' untranslated regions (5'UTRs) can regulate gene expression and have clinical impact. Recognition of functionally significant sequences within 5'UTRs is crucial in next-generation sequencing applications. Furthermore, information about the behavior of 5'UTRs during gene evolution is scarce. Using the example of the ATP-binding cassette transporter A1 (ABCA1) gene (Tangier disease), we describe our algorithm for functionally significant sequence finding. 5'UTR features (upstream start and stop codons, open reading frames (ORFs), GC content, motifs, and secondary structures) were studied using freely available bioinformatics tools in 55 vertebrate orthologous genes obtained from Ensembl and UCSC. The most conserved sequences were suggested as hot spots. Exon and intron enhancers and silencers (sc35, ighg2 cgamma2, ctnt, gh-1, and fibronectin eda exon), transcription factors (TFIIA, TATA, NFAT1, NFAT4, and HOXA13), some of them cancer related, and microRNA (hsa-miR-4474-3p) were localized to these regions. An upstream ORF, overlapping with the main ORF in primates and possibly coding for a small bioactive peptide, was also detected. Moreover, we showed several features of 5'UTRs, such as GC content variation, hairpin structure conservation or 5'UTR segmentation, which are interesting from a phylogenetic point of view and can stimulate further evolutionary oriented research.
Department of Biological Sciences University of Maryland Baltimore County Baltimore MD 21250 USA
Toxicogenomics Unit National Institute of Public Health Srobarova 48 100 42 Prague 10 Czech Republic
Zobrazit více v PubMed
Guo Y., Long J., He J., Li C., Cai Q., Shu X., Zheng W., Li C. Exome sequencing generates high quality data in non-target regions. BMC Genom. 2012;13:194. doi: 10.1186/1471-2164-13-194. PubMed DOI PMC
Dean M., Rzhetsky A., Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11:1156–1166. doi: 10.1101/gr.GR-1649R. PubMed DOI
Aye I., Singh A., Keelan J. Transport of lipids by ABC proteins: Interactions and implications for cellular toxicity, viability and function. Chem. Biol. Interact. 2009;180:327–339. doi: 10.1016/j.cbi.2009.04.012. PubMed DOI
Nürenberg E., Tampé R. Tying up loose ends: Ribosome recycling in eukaryotes and archaea. Trends Biochem. Sci. 2013;38:64–74. doi: 10.1016/j.tibs.2012.11.003. PubMed DOI
Iida A., Saito S., Sekine A., Kitamura Y., Kondo K., Mishima C., Osawa S., Harigae S., Nakamura Y. High-density single-nucleotide polymorphism (SNP) map of the 150-kb region corresponding to the human ATP-binding cassette transporter A1 (ABCA1) gene. J. Hum. 2001;46:522–528. doi: 10.1007/s100380170034. PubMed DOI
Phillips M. Is ABCA1 a lipid transfer protein? J. Lipid Res. 2018;59:749–763. doi: 10.1194/jlr.R082313. PubMed DOI PMC
Araujo P., Yoon K., Ko D., Smith A., Qiao M., Suresh U., Burns S., Penalva L. Before it gets started: Regulating translation at the 5′ UTR. Comp. Func. Genom. 2012;2012:1–8. doi: 10.1155/2012/475731. PubMed DOI PMC
Haimov O., Sinvani H., Dikstein R. Cap-dependent, scanning-free translation initiation mechanisms. BBA-Gene Regul. Mech. 2015;1849:1313–1318. doi: 10.1016/j.bbagrm.2015.09.006. PubMed DOI
Jackson R., Hellen C., Pestova T. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 2010;11:113–127. doi: 10.1038/nrm2838. PubMed DOI PMC
Rojas-Duran M., Gilbert W. Alternative transcription start site selection leads to large differences in translation activity in yeast. RNA. 2012;18:2299–2305. doi: 10.1261/rna.035865.112. PubMed DOI PMC
Mignone F., Gissi C., Liuni S., Pesole G. Untranslated regions of mRNAs. Genome Biol. 2002;3 doi: 10.1186/gb-2002-3-3-reviews0004. PubMed DOI PMC
Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene. 2005;361:13–37. doi: 10.1016/j.gene.2005.06.037. PubMed DOI
Leppek K., Das R., Barna M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 2017;19:158–174. doi: 10.1038/nrm.2017.103. PubMed DOI PMC
Pezeshkpoor B., Berkemeier A., Czogalla K., Oldenburg J., El-Maarri O. Evidence of pathogenicity of a mutation in 3′ untranslated region causing mild haemophilia A. Haemophilia. 2016;22:598–603. doi: 10.1111/hae.12923. PubMed DOI
Piraino S., Furney S. Beyond the exome: The role of non-coding somatic mutations in cancer. Ann. Oncol. 2015;27:240–248. doi: 10.1093/annonc/mdv561. PubMed DOI
Cenik C., Derti A., Mellor J., Berriz G., Roth F. Genome-wide functional analysis of human 5′ untranslated region introns. Genome Biol. 2010;11:R29. doi: 10.1186/gb-2010-11-3-r29. PubMed DOI PMC
Bicknell A., Cenik C., Chua H., Roth F., Moore M. Introns in UTRs: Why we should stop ignoring them? Bioessays. 2012;34:1025–1034. doi: 10.1002/bies.201200073. PubMed DOI
Jo B., Choi S. Introns: The functional benefits of introns in genomes. Genom. Inform. 2015;13:112. doi: 10.5808/GI.2015.13.4.112. PubMed DOI PMC
Aken B., Achuthan P., Akanni W., Amode M., Bernsdorff F., Bhai J., Billis K., Carvalho-Silva D., Cummins C., Clapham P., et al. Ensembl 2017. Nucleic Acids Res. 2016;45:D635–D642. doi: 10.1093/nar/gkw1104. PubMed DOI PMC
Rodriguez J., Rodriguez-Rivas J., Di Domenico T., Vázquez J., Valencia A., Tress M. APPRIS 2017: Principal isoforms for multiple gene sets. Nucleic Acids Res. 2017;46:D213–D217. doi: 10.1093/nar/gkx997. PubMed DOI PMC
Vilella A., Severin J., Ureta-Vidal A., Heng L., Durbin R., Birney E. EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 2008;19:327–335. doi: 10.1101/gr.073585.107. PubMed DOI PMC
Haubold B., Wiehe T. Comparative genomics: Methods and applications. Naturwissenschaften. 2004;91:405–421. doi: 10.1007/s00114-004-0542-8. PubMed DOI
Waterhouse A., Procter J., Martin D., Clamp M., Barton G. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–1191. doi: 10.1093/bioinformatics/btp033. PubMed DOI PMC
Kent W., Sugnet C., Furey T., Roskin K., Pringle T., Zahler A., Haussler A. The human genome browser at UCSC. Genome Res. 2002;12:996–1006. doi: 10.1101/gr.229102. PubMed DOI PMC
Skarshewski A., Stanton-Cook M., Huber T., Al Mansoori S., Smith R., Beatson S., Rothnagel J. uPEPperoni: An online tool for upstream open reading frame location and analysis of transcript conservation. BMC Bioinform. 2014;15:36. doi: 10.1186/1471-2105-15-36. PubMed DOI PMC
Tikole S., Sankararamakrishnan R. Prediction of translation initiation sites in human mRNA sequences with AUG start codon in weak Kozak context: A neural network approach. Biochem. Biophys. Res. Commun. 2008;369:1166–1168. doi: 10.1016/j.bbrc.2008.03.008. PubMed DOI
Grillo G., Turi A., Licciulli F., Mignone F., Liuni S., Banfi S., Gennarino V., Horner D., Pavesi G., Picardi E., et al. UTRdb and UTRsite (RELEASE 2010): A collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res. 2010;38:D75–D80. doi: 10.1093/nar/gkp902. PubMed DOI PMC
Chang T., Huang H., Hsu J., Weng S., Horng J., Huang H. An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinform. 2013;14:S4 PubMed PMC
Bailey T., Bodén M., Buske F., Frith M., Grant Ch., Clementi L., Ren J., Li W., Noble W. MEME Suite: Tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–W208. doi: 10.1093/nar/gkp335. PubMed DOI PMC
Pesole G., Grillo G., Larizza A., Liuni S. The untranslated regions of eukaryotic mRNAs: Structure, function, evolution and bioinformatic tools for their analysis. Brief. Bioinform. 2000;1:236–249. doi: 10.1093/bib/1.3.236. PubMed DOI
Pesole G., Mignone F., Gissi C., Grillo G., Licciulli F., Liuni S. Structural and functional features of eukaryotic mRNA untranslated regions. Gene. 2001;276:73–81. doi: 10.1016/S0378-1119(01)00674-6. PubMed DOI
Mazumder B., Seshadri V., Fox P. Translational control by the 3′-UTR: The ends specify the means. Trends Biochem. Sci. 2003;28:91–98. doi: 10.1016/S0968-0004(03)00002-1. PubMed DOI
Lynch M., Conery J. The origins of genome complexity. Science. 2003;302:1401–1404. doi: 10.1126/science.1089370. PubMed DOI
Lynch M., Scofield D., Hong X. The evolution of transcription-initiation sites. Mol. Biol. Evol. 2005;22:1137–1146. doi: 10.1093/molbev/msi100. PubMed DOI
Charlesworth B., Barton N. Genome size: Does bigger mean worse? Curr. Biol. 2004;14:R233–R235. doi: 10.1016/j.cub.2004.02.054. PubMed DOI
Daubin V., Moran N. Comment on “The origins of genome complexity”. Science. 2004;306:978. doi: 10.1126/science.1098469. PubMed DOI
Reuter M., Engelstadter J., Fontanillas P., Hurst L. A Test of the null model for 5′ UTR evolution based on GC content. Mol. Biol. Evol. 2008;25:801–804. doi: 10.1093/molbev/msn044. PubMed DOI
Vinogradov A., Anatskaya O. Organismal complexity, cell differentiation and gene expression: Human over mouse. Nucleic Acids Res. 2007;35:6350–6356. doi: 10.1093/nar/gkm723. PubMed DOI PMC
Whitney K., Garland T. Did genetic drift drive increases in genome complexity? PLoS Genet. 2010;6:e1001080. doi: 10.1371/journal.pgen.1001080. PubMed DOI PMC
Chen C., Lin H., Pan C., Chen F. The plausible reason why the length of 5′ untranslated region is unrelated to organismal complexity. BMC Res. Notes. 2011;4:312. doi: 10.1186/1756-0500-4-312. PubMed DOI PMC
Chen C., Lin H., Pan C., Chen F. The genomic features that affect the lengths of 5′ untranslated regions in multicellular eukaryotes. BMC Bioinform. 2011;12:S3. doi: 10.1186/1471-2105-12-S9-S3. PubMed DOI PMC
Lim C., Wardell S., Kleffmann T., Brown C. The exon-intron gene structure upstream of the initiation codon predicts translation efficiency. Nucleic Acids Res. 2018;46:4575–4591. doi: 10.1093/nar/gky282. PubMed DOI PMC
Hong X., Scofield D., Lynch M. Intron size, abundance, and distribution within untranslated regions of genes. Mol. Biol. Evol. 2006;23:2392–2404. doi: 10.1093/molbev/msl111. PubMed DOI
Deutsch M., Long M. Intron—Exon structures of eukaryotic model organisms. Nucleic Acids Res. 1999;27:3219–3228. PubMed PMC
Vinogradov A. Intron—Genome size relationship on a large evolutionary scale. J. Mol. Evol. 1999;49:376–384. doi: 10.1007/PL00006561. PubMed DOI
Larizza A., Makalowski W., Pesole G., Saccone C. Evolutionary dynamics of mammalian mRNA untranslated regions by comparative analysis of orthologous human, artiodactyl and rodent gene pairs. Comput. Chem. 2002;26:479–490. doi: 10.1016/S0097-8485(02)00009-8. PubMed DOI
Shabalina S., Ogurtsov A., Rogozin I., Koonin E., Lipman D. Comparative analysis of orthologous eukaryotic mRNAs: Potential hidden functional signals. Nucleic Acids Res. 2004;32:1774–1782. doi: 10.1093/nar/gkh313. PubMed DOI PMC
Vinogradov A. “Genome design” model: Evidence from conserved intronic sequence in human-mouse comparison. Genome Res. 2006;16:347–354. doi: 10.1101/gr.4318206. PubMed DOI PMC
Pozzoli U., Menozzi G., Comi G., Cagliani R., Bresolin N., Sironi M. Intron size in mammals: Complexity comes to terms with economy. Trends Genet. 2007;23:20–24. doi: 10.1016/j.tig.2006.10.003. PubMed DOI
LaConte L., Mukherjee K. Structural constraints and functional divergences in CASK evolution. Biochem. Soc. Trans. 2013;41:1017–1022. doi: 10.1042/BST20130061. PubMed DOI
Kozak M. Pushing the limits of the scanning mechanism for initiation of translation. Gene. 2002;299:1–34. doi: 10.1016/S0378-1119(02)01056-9. PubMed DOI PMC
Rogozin I., Kochetov A., Kondrashov F., Koonin E., Milanesi L. Presence of ATG triplets in 5′ untranslated regions of eukaryotic cDNAs correlates with a weak’ context of the start codon. Bioinformatics. 2001;17:890–900. doi: 10.1093/bioinformatics/17.10.890. PubMed DOI
Iacono M., Mignone F., Pesole G. uAUG and uORFs in human and rodent 5′untranslated mRNAs. Gene. 2005;349:97–105. doi: 10.1016/j.gene.2004.11.041. PubMed DOI
Calvo S., Pagliarini D., Mootha V. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl. Acad. Sci. USA. 2009;106:7507–7512. doi: 10.1073/pnas.0810916106. PubMed DOI PMC
Churbanov A., Rogozin I., Babenko V., Ali H., Koonin E. Evolutionary conservation suggests a regulatory function of AUG triplets in 5′-UTRs of eukaryotic genes. Nucleic Acids Res. 2005;33:5512–5520. doi: 10.1093/nar/gki847. PubMed DOI PMC
Matsui M., Yachie N., Okada Y., Saito R., Tomita M. Bioinformatic analysis of post-transcriptional regulation by uORF in human and mouse. FEBS Lett. 2007;581:4184–4188. doi: 10.1016/j.febslet.2007.07.057. PubMed DOI
Zhou W., Song W. Leaky scanning and reinitiation regulate BACE1 gene expression. Mol. Cell Biol. 2006;26:3353–3364. doi: 10.1128/MCB.26.9.3353-3364.2006. PubMed DOI PMC
Kochetov A. Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. Bioessays. 2008;30:683–691. doi: 10.1002/bies.20771. PubMed DOI
Kozak M. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol. Cell Biol. 1987;7:3438–3445. doi: 10.1128/MCB.7.10.3438. PubMed DOI PMC
Luukkonen B., Tan W., Schwartz S. Efficiency of reinitiation of translation on human immunodeficiency virus type 1 mRNAs is determined by the length of the upstream open reading frame and by intercistronic distance. J. Virol. 1995;69:4086–4094. PubMed PMC
Kochetov A., Ahmad S., Ivanisenko V., Volkova O., Kolchanov N., Sarai A. uORFs, reinitiation and alternative translation start sites in human mRNAs. FEBS Lett. 2008;582:1293–1297. doi: 10.1016/j.febslet.2008.03.014. PubMed DOI
Wethmar K., Smink J., Leutz A. Upstream open reading frames: Molecular switches in (patho)physiology. Bioessays. 2010;32:885–893. doi: 10.1002/bies.201000037. PubMed DOI PMC
Hsu M., Chen F. Selective constraint on the upstream open reading frames that overlap with coding sequences in animals. PLoS ONE. 2012;7:e48413. doi: 10.1371/journal.pone.0048413. PubMed DOI PMC
Barbosa C., Peixeiro I., Romão L. Gene expression regulation by upstream open reading frames and human disease. PLoS Genet. 2013;9:e1003529. doi: 10.1371/journal.pgen.1003529. PubMed DOI PMC
Somers J., Pöyry T., Willis A. A perspective on mammalian upstream open reading frame function. Int. J. Biochem. Cell Biol. 2013;45:1690–1700. doi: 10.1016/j.biocel.2013.04.020. PubMed DOI PMC
Andrews S., Rothnagel J. Emerging evidence for functional peptides encoded by short open reading frames. Nat. Rev. Genet. 2014;15:193–204. doi: 10.1038/nrg3520. PubMed DOI
Brunet M., Levesque S., Hunting D., Cohen A., Roucou X. Recognition of the polycistronic nature of human genes is critical to understanding the genotype-phenotype relationship. Genome Res. 2018;28:609–624. doi: 10.1101/gr.230938.117. PubMed DOI PMC
Bernardi G., Olofsson B., Filipski J., Zerial M., Salinas J., Cuny G., Meunier-Rotival M., Rodier F. The mosaic genome of warm-blooded vertebrates. Science. 1985;228:953–958. doi: 10.1126/science.4001930. PubMed DOI
Romiguier J., Ranwez V., Douzery E., Galtier N. Contrasting GC-content dynamics across 33 mammalian genomes: Relationship with life-history traits and chromosome sizes. Genome Res. 2010;20:1001–1009. doi: 10.1101/gr.104372.109. PubMed DOI PMC
Duret L., Semon M., Piganeau G., Mouchiroud D., Galtier N. Vanishing GC-rich isochores in mammalian genomes. Genetics. 2002;162:1837–1847. PubMed PMC
Gu J., Li W. Are GC-rich isochores vanishing in mammals? Gene. 2006;385:50–56. doi: 10.1016/j.gene.2006.03.026. PubMed DOI
Gupta K., Sari-Ak D., Haffke M., Trowitzsch S., Berger I. Zooming in on transcription preinitiation. J. Mol. Biol. 2016;428:2581–2591. doi: 10.1016/j.jmb.2016.04.003. PubMed DOI PMC
Mognol G., Carneiro F., Robbs B., Faget D., Viola J. Cell cycle and apoptosis regulation by NFAT transcription factors: New roles for an old player. Cell Death Dis. 2016;7:e2199. doi: 10.1038/cddis.2016.97. PubMed DOI PMC
Wen Y., Shu F., Chen Y., Chen Y., Lan Y., Duan X., Zhao S., Zeng G. The prognostic value of HOXA13 in solid tumors: A meta-analysis. Clin. Chim. Acta. 2018;483:64–68. doi: 10.1016/j.cca.2018.04.024. PubMed DOI
Xiong T., Xu G., Huang X., Lu K., Xie W., Yin K., Tu J. ATP-binding cassette transporter A1: A promising therapy target for prostate cancer. Mol. Clin. Oncol. 2018;8:9–14. doi: 10.3892/mco.2017.1506. PubMed DOI PMC
Kozak M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA. 1990;87:8301–8305. doi: 10.1073/pnas.87.21.8301. PubMed DOI PMC
Kochetov A., Palyanov A., Titov I., Grigorovich D., Sarai A., Kolchanov N. AUG_hairpin: Prediction of a downstream secondary structure influencing the recognition of a translation start site. BMC Bioinform. 2007;8:318. doi: 10.1186/1471-2105-8-318. PubMed DOI PMC
Faure G., Ogurtsov A., Shabalina S., Koonin E. Adaptation of mRNA structure to control protein folding. RNA Biol. 2017;14:1649–1654. doi: 10.1080/15476286.2017.1349047. PubMed DOI PMC
Ringner M., Krogh M. Folding free energies of 5′-UTRs impact post-transcriptional regulation on a genomic scale in yeast. PLoS Comput. Biol. 2005;1:e72. doi: 10.1371/journal.pcbi.0010072. PubMed DOI PMC