5' Untranslated Region Elements Show High Abundance and Great Variability in Homologous ABCA Subfamily Genes

. 2020 Nov 23 ; 21 (22) : . [epub] 20201123

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33238634

Grantová podpora
LTC19015 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000787 Ministerstvo Školství, Mládeže a Tělovýchovy
UNCE/MED/006 Univerzita Karlova v Praze

The 12 members of the ABCA subfamily in humans are known for their ability to transport cholesterol and its derivatives, vitamins, and xenobiotics across biomembranes. Several ABCA genes are causatively linked to inborn diseases, and the role in cancer progression and metastasis is studied intensively. The regulation of translation initiation is implicated as the major mechanism in the processes of post-transcriptional modifications determining final protein levels. In the current bioinformatics study, we mapped the features of the 5' untranslated regions (5'UTR) known to have the potential to regulate translation, such as the length of 5'UTRs, upstream ATG codons, upstream open-reading frames, introns, RNA G-quadruplex-forming sequences, stem loops, and Kozak consensus motifs, in the DNA sequences of all members of the subfamily. Subsequently, the conservation of the features, correlations among them, ribosome profiling data as well as protein levels in normal human tissues were examined. The 5'UTRs of ABCA genes contain above-average numbers of upstream ATGs, open-reading frames and introns, as well as conserved ones, and these elements probably play important biological roles in this subfamily, unlike RG4s. Although we found significant correlations among the features, we did not find any correlation between the numbers of 5'UTR features and protein tissue distribution and expression scores. We showed the existence of single nucleotide variants in relation to the 5'UTR features experimentally in a cohort of 105 breast cancer patients. 5'UTR features presumably prepare a complex playground, in which the other elements such as RNA binding proteins and non-coding RNAs play the major role in the fine-tuning of protein expression.

Zobrazit více v PubMed

Davidson A., Dassa E., Orelle C., Chen J. Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems. Microbiol. Mol. Biol. Rev. 2008;72:317–364. doi: 10.1128/MMBR.00031-07. PubMed DOI PMC

Ford R., Beis K. Learning the Abcs One at a Time: Structure and Mechanism of ABC Transporters. Biochem. Soc. Trans. 2019;47:23–36. doi: 10.1042/BST20180147. PubMed DOI

Dean M., Rzhetsky A., Allikmets R. The Human ATP-Binding Cassette (ABC) Transporter Superfamily. Genome Res. 2001;11:1156–1166. doi: 10.1101/gr.GR-1649R. PubMed DOI

Pasello M., Giudice A., Scotlandi K. The ABC Subfamily a Transporters: Multifaceted Players with Incipient Potentialities in Cancer. Semin. Cancer Biol. 2020;60:57–71. doi: 10.1016/j.semcancer.2019.10.004. PubMed DOI

Piehler A., Özcürümez M., Kaminski W. A-Subclass ATP-Binding Cassette Proteins in Brain Lipid Homeostasis and Neurodegeneration. Front. Psychiatry. 2012;3:17. doi: 10.3389/fpsyt.2012.00017. PubMed DOI PMC

Kaminski W., Piehler A., Wenzel J. ABC A-Subfamily Transporters: Structure, Function and Disease. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2006;1762:510–524. doi: 10.1016/j.bbadis.2006.01.011. PubMed DOI

Elsnerova K., Mohelnikova-Duchonova B., Cerovska E., Ehrlichova M., Gut I., Rob L., Skapa P., Hruda M., Bartakova A., Bouda J., et al. Gene Expression of Membrane Transporters: Importance for Prognosis and Progression of Ovarian Carcinoma. Oncol. Rep. 2016;35:2159–2170. doi: 10.3892/or.2016.4599. PubMed DOI

Elsnerova K., Bartakova A., Tihlarik J., Bouda J., Rob L., Skapa P., Hruda M., Gut I., Mohelnikova-Duchonova B., Soucek P., et al. Gene Expression Profiling Reveals Novel Candidate Markers of Ovarian Carcinoma Intraperitoneal Metastasis. J. Cancer. 2017;8:3598–3606. doi: 10.7150/jca.20766. PubMed DOI PMC

Dvorak P., Pesta M., Soucek P. ABC Gene Expression Profiles Have Clinical Importance and Possibly Form a New Hallmark of Cancer. Tumor Biol. 2017;39:101042831769980. doi: 10.1177/1010428317699800. PubMed DOI

Hlaváč V., Brynychová V., Václavíková R., Ehrlichová M., Vrána D., Pecha V., Koževnikovová R., Trnková M., Gatěk J., Kopperová D., et al. The Expression Profile of ATP-Binding Cassette Transporter Genes in Breast Carcinoma. Pharmacogenomics. 2013;14:515–529. doi: 10.2217/pgs.13.26. PubMed DOI

Hlavata I., Mohelnikova-Duchonova B., Vaclavikova R., Liska V., Pitule P., Novak P., Bruha J., Vycital O., Holubec L., Treska V., et al. The Role of ABC Transporters in Progression and Clinical Outcome of Colorectal Cancer. Mutagenesis. 2012;27:187–196. doi: 10.1093/mutage/ger075. PubMed DOI

Hedditch E., Gao B., Russell A., Lu Y., Emmanuel C., Beesley J., Johnatty S., Chen X., Harnett P., George J., et al. ABCA Transporter Gene Expression and Poor Outcome in Epithelial Ovarian Cancer. JNCI J. Natl. Cancer Inst. 2014;106:dju149. doi: 10.1093/jnci/dju149. PubMed DOI PMC

Annilo T., Chen Z., Shulenin S., Costantino J., Thomas L., Lou H., Stefanov S., Dean M. Evolution of the Vertebrate ABC Gene Family: Analysis of Gene Birth and Death. Genomics. 2006;88:1–11. doi: 10.1016/j.ygeno.2006.03.001. PubMed DOI

Moitra K., Dean M. Evolution of ABC Transporters by Gene Duplication and Their Role in Human Disease. Biol. Chem. 2011;392:29–37. doi: 10.1515/bc.2011.006. PubMed DOI

Li G., Shi P., Wang Y. Evolutionary Dynamics of the ABCA Chromosome 17Q24 Cluster Genes in Vertebrates. Genomics. 2007;89:385–391. doi: 10.1016/j.ygeno.2006.07.015. PubMed DOI

Vogel C., de Sousa Abreu R., Ko D., Le S., Shapiro B., Burns S., Sandhu D., Boutz D., Marcotte E., Penalva L. Sequence Signatures and Mrna Concentration Can Explain Two-Thirds of Protein Abundance Variation in a Human Cell Line. Mol. Syst. Biol. 2010;6:400. doi: 10.1038/msb.2010.59. PubMed DOI PMC

Kozak M. Regulation of Translation via Mrna Structure in Prokaryotes and Eukaryotes. Gene. 2005;361:13–37. doi: 10.1016/j.gene.2005.06.037. PubMed DOI

Leppek K., Das R., Barna M. Functional 5′ UTR Mrna Structures in Eukaryotic Translation Regulation and How to Find Them. Nat. Rev. Mol. Cell Biol. 2017;19:158–174. doi: 10.1038/nrm.2017.103. PubMed DOI PMC

Dvorak P., Leupen S., Soucek P. Functionally Significant Features in the 5′ Untranslated Region of the ABCA1 Gene and Their Comparison in Vertebrates. Cells. 2019;8:623. doi: 10.3390/cells8060623. PubMed DOI PMC

Peelman F., Labeur C., Vanloo B., Roosbeek S., Devaud C., Duverger N., Denèfle P., Rosier M., Vandekerckhove J., Rosseneu M. Characterization of the ABCA Transporter Subfamily: Identification of Prokaryotic and Eukaryotic Members, Phylogeny and Topology. J. Mol. Biol. 2003;325:259–274. doi: 10.1016/S0022-2836(02)01105-1. PubMed DOI

Pesole G., Grillo G., Larizza A., Liuni S. The Untranslated Regions of Eukaryotic Mrnas: Structure, Function, Evolution and Bioinformatic Tools for Their Analysis. Brief. Bioinform. 2000;1:236–249. doi: 10.1093/bib/1.3.236. PubMed DOI

Pesole G., Mignone F., Gissi C., Grillo G., Licciulli F., Liuni S. Structural and Functional Features of Eukaryotic Mrna Untranslated Regions. Gene. 2001;276:73–81. doi: 10.1016/S0378-1119(01)00674-6. PubMed DOI

Rogozin I., Kochetov A., Kondrashov F., Koonin E., Milanesi L. Presence of ATG Triplets in 5’ Untranslated Regions of Eukaryotic Cdnas Correlates with a Weak’ Context of the Start Codon. Bioinformatics. 2001;17:890–900. doi: 10.1093/bioinformatics/17.10.890. PubMed DOI

Chen C., Lin H., Pan C., Chen F. The Plausible Reason Why the Length of 5’ Untranslated Region Is Unrelated to Organismal Complexity. BMC Res. Notes. 2011;4:312. doi: 10.1186/1756-0500-4-312. PubMed DOI PMC

Nagalakshmi U., Wang Z., Waern K., Shou C., Raha D., Gerstein M., Snyder M. The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing. Science. 2008;320:1344–1349. doi: 10.1126/science.1158441. PubMed DOI PMC

Lin Z., Li W. Evolution of 5’ Untranslated Region Length and Gene Expression Reprogramming in Yeasts. Mol. Biol. Evol. 2011;29:81–89. doi: 10.1093/molbev/msr143. PubMed DOI PMC

Lynch M., Scofield D., Hong X. The Evolution of Transcription-Initiation Sites. Mol. Biol. Evol. 2005;22:1137–1146. doi: 10.1093/molbev/msi100. PubMed DOI

Kozak M. Pushing the Limits of the Scanning Mechanism for Initiation of Translation. Gene. 2002;299:1–34. doi: 10.1016/S0378-1119(02)01056-9. PubMed DOI PMC

Calvo S., Pagliarini D., Mootha V. Upstream Open Reading Frames Cause Widespread Reduction of Protein Expression and Are Polymorphic Among Humans. Proc. Natl. Acad. Sci. USA. 2009;106:7507–7512. doi: 10.1073/pnas.0810916106. PubMed DOI PMC

Al-Ali R., González-Sarmiento R. Proximity of AUG Sequences to Initiation Codon in Genomic 5′ UTR Regulates Mammalian Protein Expression. Gene. 2016;594:268–271. doi: 10.1016/j.gene.2016.08.052. PubMed DOI

Churbanov A., Rogozin I., Babenko V., Ali H., Koonin E. Evolutionary Conservation Suggests a Regulatory Function of AUG Triplets in 5’-Utrs of Eukaryotic Genes. Nucleic Acids Res. 2005;33:5512–5520. doi: 10.1093/nar/gki847. PubMed DOI PMC

Iacono M., Mignone F., Pesole G. Uaug and Uorfs in Human and Rodent 5′Untranslated Mrnas. Gene. 2005;349:97–105. doi: 10.1016/j.gene.2004.11.041. PubMed DOI

Crowe M., Wang X., Rothnagel J. Evidence for Conservation and Selection of Upstream Open Reading Frames Suggests Probable Encoding of Bioactive Peptides. BMC Genom. 2006;7:16. doi: 10.1186/1471-2164-7-16. PubMed DOI PMC

Johnstone T., Bazzini A., Giraldez A. Upstream ORF S Are Prevalent Translational Repressors in Vertebrates. EMBO J. 2016;35:706–723. doi: 10.15252/embj.201592759. PubMed DOI PMC

Brunet M., Levesque S., Hunting D., Cohen A., Roucou X. Recognition of the Polycistronic Nature of Human Genes Is Critical to Understanding the Genotype-Phenotype Relationship. Genome Res. 2018;28:609–624. doi: 10.1101/gr.230938.117. PubMed DOI PMC

Cenik C., Derti A., Mellor J., Berriz G., Roth F. Genome-Wide Functional Analysis of Human 5’ Untranslated Region Introns. Genome Biol. 2010;11:R29. doi: 10.1186/gb-2010-11-3-r29. PubMed DOI PMC

Hong X., Scofield D., Lynch M. Intron Size, Abundance, and Distribution within Untranslated Regions of Genes. Mol. Biol. Evol. 2006;23:2392–2404. doi: 10.1093/molbev/msl111. PubMed DOI

Chorev M., Carmel L. The Function of Introns. Front. Genet. 2012;3:55. doi: 10.3389/fgene.2012.00055. PubMed DOI PMC

Lim C., Wardell S.T., Kleffmann T., Brown C. The Exon-Intron Gene Structure Upstream of the Initiation Codon Predicts Translation Efficiency. Nucleic Acids Res. 2018;46:4575–4591. doi: 10.1093/nar/gky282. PubMed DOI PMC

Bolduc F., Garant J., Allard F., Perreault J. Irregular G-Quadruplexes Found in the Untranslated Regions of Human Mrnas Influence Translation. J. Biol. Chem. 2016;291:21751–21760. doi: 10.1074/jbc.M116.744839. PubMed DOI PMC

Huppert J., Balasubramanian S. Prevalence of Quadruplexes in the Human Genome. Nucleic Acids Res. 2005;33:2908–2916. doi: 10.1093/nar/gki609. PubMed DOI PMC

Fay M., Lyons S., Ivanov P. RNA G-Quadruplexes in Biology: Principles and Molecular Mechanisms. J. Mol. Biol. 2017;429:2127–2147. doi: 10.1016/j.jmb.2017.05.017. PubMed DOI PMC

Kumari S., Bugaut A., Balasubramanian S. Position and Stability Are Determining Factors for Translation Repression by an RNA G-Quadruplex-Forming Sequence within the 5′ UTR of Thenrasproto-Oncogene. Biochemistry. 2008;47:12664–12669. doi: 10.1021/bi8010797. PubMed DOI PMC

Ravichandran S., Ahn J., Kim K. Unraveling the Regulatory G-Quadruplex Puzzle: Lessons from Genome and Transcriptome-Wide Studies. Front. Genet. 2019;10:1002. doi: 10.3389/fgene.2019.01002. PubMed DOI PMC

Huppert J., Bugaut A., Kumari S., Balasubramanian S. G-Quadruplexes: The Beginning and End of Utrs. Nucleic Acids Res. 2008;36:6260–6268. doi: 10.1093/nar/gkn511. PubMed DOI PMC

Maizels N., Gray L. The G4 Genome. PLoS Genet. 2013;9:e1003468. doi: 10.1371/journal.pgen.1003468. PubMed DOI PMC

Bedrat A., Lacroix L., Mergny J. Re-Evaluation of G-Quadruplex Propensity with G4hunter. Nucleic Acids Res. 2016;44:1746–1759. doi: 10.1093/nar/gkw006. PubMed DOI PMC

Svoboda P., Cara A. Hairpin RNA: A Secondary Structure of Primary Importance. Cell. Mol. Life Sci. 2006;63:901–908. doi: 10.1007/s00018-005-5558-5. PubMed DOI PMC

Babendure J., Babendure J., Ding J., Tsien R. Control of Mammalian Translation by Mrna Structure near Caps. RNA. 2006;12:851–861. doi: 10.1261/rna.2309906. PubMed DOI PMC

Weenink T., van der Hilst J., McKiernan R., Ellis T. Design of RNA Hairpin Modules That Predictably Tune Translation in Yeast. Synth. Biol. 2018;3:ysy019. doi: 10.1093/synbio/ysy019. PubMed DOI PMC

Varani G. Exceptionally Stable Nucleic Acid Hairpins. Annu. Rev. Biophys. Biomol. Struct. 1995;24:379–404. doi: 10.1146/annurev.bb.24.060195.002115. PubMed DOI

Wan Y., Qu K., Zhang Q., Flynn R., Manor O., Ouyang Z., Zhang J., Spitale R., Snyder M., Segal E., et al. Landscape and Variation of RNA Secondary Structure across the Human Transcriptome. Nature. 2014;505:706–709. doi: 10.1038/nature12946. PubMed DOI PMC

Ajay S., Athey B., Lee I. Unified Translation Repression Mechanism for Micrornas and Upstream Augs. BMC Genom. 2010;11:155. doi: 10.1186/1471-2164-11-155. PubMed DOI PMC

Waterhouse A., Procter J., Martin D., Clamp M., Barton G. Jalview Version 2—A Multiple Sequence Alignment Editor and Analysis Workbench. Bioinformatics. 2009;25:1189–1191. doi: 10.1093/bioinformatics/btp033. PubMed DOI PMC

Hernández G., Osnaya V., Pérez-Martínez X. Conservation and Variability of the AUG Initiation Codon Context in Eukaryotes. Trends Biochem. Sci. 2019;44:1009–1021. doi: 10.1016/j.tibs.2019.07.001. PubMed DOI

Doluca O. G4catchall: A G-Quadruplex Prediction Approach Considering Atypical Features. J. Theor. Biol. 2019;463:92–98. doi: 10.1016/j.jtbi.2018.12.007. PubMed DOI

Hlavac V., Kovacova M., Elsnerova K., Brynychova V., Kozevnikovova R., Raus K., Kopeckova K., Mestakova S., Vrana D., Gatek J., et al. Use of Germline Genetic Variability for Prediction of Chemoresistance and Prognosis of Breast Cancer Patients. Cancers. 2018;10:511. doi: 10.3390/cancers10120511. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace