5' Untranslated Region Elements Show High Abundance and Great Variability in Homologous ABCA Subfamily Genes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTC19015
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000787
Ministerstvo Školství, Mládeže a Tělovýchovy
UNCE/MED/006
Univerzita Karlova v Praze
PubMed
33238634
PubMed Central
PMC7700387
DOI
10.3390/ijms21228878
PII: ijms21228878
Knihovny.cz E-zdroje
- Klíčová slova
- 5′ untranslated region, ABC transporters, ABCA subfamily, bioinformatics, cis-acting elements,
- MeSH
- 5' nepřekládaná oblast genetika MeSH
- ABC transportér, podrodina A klasifikace genetika metabolismus MeSH
- biologický transport genetika MeSH
- cholesterol metabolismus MeSH
- introny genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé MeSH
- multigenová rodina genetika MeSH
- otevřené čtecí rámce genetika MeSH
- proteosyntéza genetika MeSH
- ribozomy genetika metabolismus MeSH
- výpočetní biologie MeSH
- xenobiotika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 5' nepřekládaná oblast MeSH
- ABC transportér, podrodina A MeSH
- cholesterol MeSH
- xenobiotika MeSH
The 12 members of the ABCA subfamily in humans are known for their ability to transport cholesterol and its derivatives, vitamins, and xenobiotics across biomembranes. Several ABCA genes are causatively linked to inborn diseases, and the role in cancer progression and metastasis is studied intensively. The regulation of translation initiation is implicated as the major mechanism in the processes of post-transcriptional modifications determining final protein levels. In the current bioinformatics study, we mapped the features of the 5' untranslated regions (5'UTR) known to have the potential to regulate translation, such as the length of 5'UTRs, upstream ATG codons, upstream open-reading frames, introns, RNA G-quadruplex-forming sequences, stem loops, and Kozak consensus motifs, in the DNA sequences of all members of the subfamily. Subsequently, the conservation of the features, correlations among them, ribosome profiling data as well as protein levels in normal human tissues were examined. The 5'UTRs of ABCA genes contain above-average numbers of upstream ATGs, open-reading frames and introns, as well as conserved ones, and these elements probably play important biological roles in this subfamily, unlike RG4s. Although we found significant correlations among the features, we did not find any correlation between the numbers of 5'UTR features and protein tissue distribution and expression scores. We showed the existence of single nucleotide variants in relation to the 5'UTR features experimentally in a cohort of 105 breast cancer patients. 5'UTR features presumably prepare a complex playground, in which the other elements such as RNA binding proteins and non-coding RNAs play the major role in the fine-tuning of protein expression.
Biomedical Center Faculty of Medicine in Pilsen Charles University 32300 Pilsen Czech Republic
Department of Biology Faculty of Medicine in Pilsen Charles University 32300 Pilsen Czech Republic
Toxicogenomics Unit National Institute of Public Health 100 42 Prague Czech Republic
Zobrazit více v PubMed
Davidson A., Dassa E., Orelle C., Chen J. Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems. Microbiol. Mol. Biol. Rev. 2008;72:317–364. doi: 10.1128/MMBR.00031-07. PubMed DOI PMC
Ford R., Beis K. Learning the Abcs One at a Time: Structure and Mechanism of ABC Transporters. Biochem. Soc. Trans. 2019;47:23–36. doi: 10.1042/BST20180147. PubMed DOI
Dean M., Rzhetsky A., Allikmets R. The Human ATP-Binding Cassette (ABC) Transporter Superfamily. Genome Res. 2001;11:1156–1166. doi: 10.1101/gr.GR-1649R. PubMed DOI
Pasello M., Giudice A., Scotlandi K. The ABC Subfamily a Transporters: Multifaceted Players with Incipient Potentialities in Cancer. Semin. Cancer Biol. 2020;60:57–71. doi: 10.1016/j.semcancer.2019.10.004. PubMed DOI
Piehler A., Özcürümez M., Kaminski W. A-Subclass ATP-Binding Cassette Proteins in Brain Lipid Homeostasis and Neurodegeneration. Front. Psychiatry. 2012;3:17. doi: 10.3389/fpsyt.2012.00017. PubMed DOI PMC
Kaminski W., Piehler A., Wenzel J. ABC A-Subfamily Transporters: Structure, Function and Disease. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2006;1762:510–524. doi: 10.1016/j.bbadis.2006.01.011. PubMed DOI
Elsnerova K., Mohelnikova-Duchonova B., Cerovska E., Ehrlichova M., Gut I., Rob L., Skapa P., Hruda M., Bartakova A., Bouda J., et al. Gene Expression of Membrane Transporters: Importance for Prognosis and Progression of Ovarian Carcinoma. Oncol. Rep. 2016;35:2159–2170. doi: 10.3892/or.2016.4599. PubMed DOI
Elsnerova K., Bartakova A., Tihlarik J., Bouda J., Rob L., Skapa P., Hruda M., Gut I., Mohelnikova-Duchonova B., Soucek P., et al. Gene Expression Profiling Reveals Novel Candidate Markers of Ovarian Carcinoma Intraperitoneal Metastasis. J. Cancer. 2017;8:3598–3606. doi: 10.7150/jca.20766. PubMed DOI PMC
Dvorak P., Pesta M., Soucek P. ABC Gene Expression Profiles Have Clinical Importance and Possibly Form a New Hallmark of Cancer. Tumor Biol. 2017;39:101042831769980. doi: 10.1177/1010428317699800. PubMed DOI
Hlaváč V., Brynychová V., Václavíková R., Ehrlichová M., Vrána D., Pecha V., Koževnikovová R., Trnková M., Gatěk J., Kopperová D., et al. The Expression Profile of ATP-Binding Cassette Transporter Genes in Breast Carcinoma. Pharmacogenomics. 2013;14:515–529. doi: 10.2217/pgs.13.26. PubMed DOI
Hlavata I., Mohelnikova-Duchonova B., Vaclavikova R., Liska V., Pitule P., Novak P., Bruha J., Vycital O., Holubec L., Treska V., et al. The Role of ABC Transporters in Progression and Clinical Outcome of Colorectal Cancer. Mutagenesis. 2012;27:187–196. doi: 10.1093/mutage/ger075. PubMed DOI
Hedditch E., Gao B., Russell A., Lu Y., Emmanuel C., Beesley J., Johnatty S., Chen X., Harnett P., George J., et al. ABCA Transporter Gene Expression and Poor Outcome in Epithelial Ovarian Cancer. JNCI J. Natl. Cancer Inst. 2014;106:dju149. doi: 10.1093/jnci/dju149. PubMed DOI PMC
Annilo T., Chen Z., Shulenin S., Costantino J., Thomas L., Lou H., Stefanov S., Dean M. Evolution of the Vertebrate ABC Gene Family: Analysis of Gene Birth and Death. Genomics. 2006;88:1–11. doi: 10.1016/j.ygeno.2006.03.001. PubMed DOI
Moitra K., Dean M. Evolution of ABC Transporters by Gene Duplication and Their Role in Human Disease. Biol. Chem. 2011;392:29–37. doi: 10.1515/bc.2011.006. PubMed DOI
Li G., Shi P., Wang Y. Evolutionary Dynamics of the ABCA Chromosome 17Q24 Cluster Genes in Vertebrates. Genomics. 2007;89:385–391. doi: 10.1016/j.ygeno.2006.07.015. PubMed DOI
Vogel C., de Sousa Abreu R., Ko D., Le S., Shapiro B., Burns S., Sandhu D., Boutz D., Marcotte E., Penalva L. Sequence Signatures and Mrna Concentration Can Explain Two-Thirds of Protein Abundance Variation in a Human Cell Line. Mol. Syst. Biol. 2010;6:400. doi: 10.1038/msb.2010.59. PubMed DOI PMC
Kozak M. Regulation of Translation via Mrna Structure in Prokaryotes and Eukaryotes. Gene. 2005;361:13–37. doi: 10.1016/j.gene.2005.06.037. PubMed DOI
Leppek K., Das R., Barna M. Functional 5′ UTR Mrna Structures in Eukaryotic Translation Regulation and How to Find Them. Nat. Rev. Mol. Cell Biol. 2017;19:158–174. doi: 10.1038/nrm.2017.103. PubMed DOI PMC
Dvorak P., Leupen S., Soucek P. Functionally Significant Features in the 5′ Untranslated Region of the ABCA1 Gene and Their Comparison in Vertebrates. Cells. 2019;8:623. doi: 10.3390/cells8060623. PubMed DOI PMC
Peelman F., Labeur C., Vanloo B., Roosbeek S., Devaud C., Duverger N., Denèfle P., Rosier M., Vandekerckhove J., Rosseneu M. Characterization of the ABCA Transporter Subfamily: Identification of Prokaryotic and Eukaryotic Members, Phylogeny and Topology. J. Mol. Biol. 2003;325:259–274. doi: 10.1016/S0022-2836(02)01105-1. PubMed DOI
Pesole G., Grillo G., Larizza A., Liuni S. The Untranslated Regions of Eukaryotic Mrnas: Structure, Function, Evolution and Bioinformatic Tools for Their Analysis. Brief. Bioinform. 2000;1:236–249. doi: 10.1093/bib/1.3.236. PubMed DOI
Pesole G., Mignone F., Gissi C., Grillo G., Licciulli F., Liuni S. Structural and Functional Features of Eukaryotic Mrna Untranslated Regions. Gene. 2001;276:73–81. doi: 10.1016/S0378-1119(01)00674-6. PubMed DOI
Rogozin I., Kochetov A., Kondrashov F., Koonin E., Milanesi L. Presence of ATG Triplets in 5’ Untranslated Regions of Eukaryotic Cdnas Correlates with a Weak’ Context of the Start Codon. Bioinformatics. 2001;17:890–900. doi: 10.1093/bioinformatics/17.10.890. PubMed DOI
Chen C., Lin H., Pan C., Chen F. The Plausible Reason Why the Length of 5’ Untranslated Region Is Unrelated to Organismal Complexity. BMC Res. Notes. 2011;4:312. doi: 10.1186/1756-0500-4-312. PubMed DOI PMC
Nagalakshmi U., Wang Z., Waern K., Shou C., Raha D., Gerstein M., Snyder M. The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing. Science. 2008;320:1344–1349. doi: 10.1126/science.1158441. PubMed DOI PMC
Lin Z., Li W. Evolution of 5’ Untranslated Region Length and Gene Expression Reprogramming in Yeasts. Mol. Biol. Evol. 2011;29:81–89. doi: 10.1093/molbev/msr143. PubMed DOI PMC
Lynch M., Scofield D., Hong X. The Evolution of Transcription-Initiation Sites. Mol. Biol. Evol. 2005;22:1137–1146. doi: 10.1093/molbev/msi100. PubMed DOI
Kozak M. Pushing the Limits of the Scanning Mechanism for Initiation of Translation. Gene. 2002;299:1–34. doi: 10.1016/S0378-1119(02)01056-9. PubMed DOI PMC
Calvo S., Pagliarini D., Mootha V. Upstream Open Reading Frames Cause Widespread Reduction of Protein Expression and Are Polymorphic Among Humans. Proc. Natl. Acad. Sci. USA. 2009;106:7507–7512. doi: 10.1073/pnas.0810916106. PubMed DOI PMC
Al-Ali R., González-Sarmiento R. Proximity of AUG Sequences to Initiation Codon in Genomic 5′ UTR Regulates Mammalian Protein Expression. Gene. 2016;594:268–271. doi: 10.1016/j.gene.2016.08.052. PubMed DOI
Churbanov A., Rogozin I., Babenko V., Ali H., Koonin E. Evolutionary Conservation Suggests a Regulatory Function of AUG Triplets in 5’-Utrs of Eukaryotic Genes. Nucleic Acids Res. 2005;33:5512–5520. doi: 10.1093/nar/gki847. PubMed DOI PMC
Iacono M., Mignone F., Pesole G. Uaug and Uorfs in Human and Rodent 5′Untranslated Mrnas. Gene. 2005;349:97–105. doi: 10.1016/j.gene.2004.11.041. PubMed DOI
Crowe M., Wang X., Rothnagel J. Evidence for Conservation and Selection of Upstream Open Reading Frames Suggests Probable Encoding of Bioactive Peptides. BMC Genom. 2006;7:16. doi: 10.1186/1471-2164-7-16. PubMed DOI PMC
Johnstone T., Bazzini A., Giraldez A. Upstream ORF S Are Prevalent Translational Repressors in Vertebrates. EMBO J. 2016;35:706–723. doi: 10.15252/embj.201592759. PubMed DOI PMC
Brunet M., Levesque S., Hunting D., Cohen A., Roucou X. Recognition of the Polycistronic Nature of Human Genes Is Critical to Understanding the Genotype-Phenotype Relationship. Genome Res. 2018;28:609–624. doi: 10.1101/gr.230938.117. PubMed DOI PMC
Cenik C., Derti A., Mellor J., Berriz G., Roth F. Genome-Wide Functional Analysis of Human 5’ Untranslated Region Introns. Genome Biol. 2010;11:R29. doi: 10.1186/gb-2010-11-3-r29. PubMed DOI PMC
Hong X., Scofield D., Lynch M. Intron Size, Abundance, and Distribution within Untranslated Regions of Genes. Mol. Biol. Evol. 2006;23:2392–2404. doi: 10.1093/molbev/msl111. PubMed DOI
Chorev M., Carmel L. The Function of Introns. Front. Genet. 2012;3:55. doi: 10.3389/fgene.2012.00055. PubMed DOI PMC
Lim C., Wardell S.T., Kleffmann T., Brown C. The Exon-Intron Gene Structure Upstream of the Initiation Codon Predicts Translation Efficiency. Nucleic Acids Res. 2018;46:4575–4591. doi: 10.1093/nar/gky282. PubMed DOI PMC
Bolduc F., Garant J., Allard F., Perreault J. Irregular G-Quadruplexes Found in the Untranslated Regions of Human Mrnas Influence Translation. J. Biol. Chem. 2016;291:21751–21760. doi: 10.1074/jbc.M116.744839. PubMed DOI PMC
Huppert J., Balasubramanian S. Prevalence of Quadruplexes in the Human Genome. Nucleic Acids Res. 2005;33:2908–2916. doi: 10.1093/nar/gki609. PubMed DOI PMC
Fay M., Lyons S., Ivanov P. RNA G-Quadruplexes in Biology: Principles and Molecular Mechanisms. J. Mol. Biol. 2017;429:2127–2147. doi: 10.1016/j.jmb.2017.05.017. PubMed DOI PMC
Kumari S., Bugaut A., Balasubramanian S. Position and Stability Are Determining Factors for Translation Repression by an RNA G-Quadruplex-Forming Sequence within the 5′ UTR of Thenrasproto-Oncogene. Biochemistry. 2008;47:12664–12669. doi: 10.1021/bi8010797. PubMed DOI PMC
Ravichandran S., Ahn J., Kim K. Unraveling the Regulatory G-Quadruplex Puzzle: Lessons from Genome and Transcriptome-Wide Studies. Front. Genet. 2019;10:1002. doi: 10.3389/fgene.2019.01002. PubMed DOI PMC
Huppert J., Bugaut A., Kumari S., Balasubramanian S. G-Quadruplexes: The Beginning and End of Utrs. Nucleic Acids Res. 2008;36:6260–6268. doi: 10.1093/nar/gkn511. PubMed DOI PMC
Maizels N., Gray L. The G4 Genome. PLoS Genet. 2013;9:e1003468. doi: 10.1371/journal.pgen.1003468. PubMed DOI PMC
Bedrat A., Lacroix L., Mergny J. Re-Evaluation of G-Quadruplex Propensity with G4hunter. Nucleic Acids Res. 2016;44:1746–1759. doi: 10.1093/nar/gkw006. PubMed DOI PMC
Svoboda P., Cara A. Hairpin RNA: A Secondary Structure of Primary Importance. Cell. Mol. Life Sci. 2006;63:901–908. doi: 10.1007/s00018-005-5558-5. PubMed DOI PMC
Babendure J., Babendure J., Ding J., Tsien R. Control of Mammalian Translation by Mrna Structure near Caps. RNA. 2006;12:851–861. doi: 10.1261/rna.2309906. PubMed DOI PMC
Weenink T., van der Hilst J., McKiernan R., Ellis T. Design of RNA Hairpin Modules That Predictably Tune Translation in Yeast. Synth. Biol. 2018;3:ysy019. doi: 10.1093/synbio/ysy019. PubMed DOI PMC
Varani G. Exceptionally Stable Nucleic Acid Hairpins. Annu. Rev. Biophys. Biomol. Struct. 1995;24:379–404. doi: 10.1146/annurev.bb.24.060195.002115. PubMed DOI
Wan Y., Qu K., Zhang Q., Flynn R., Manor O., Ouyang Z., Zhang J., Spitale R., Snyder M., Segal E., et al. Landscape and Variation of RNA Secondary Structure across the Human Transcriptome. Nature. 2014;505:706–709. doi: 10.1038/nature12946. PubMed DOI PMC
Ajay S., Athey B., Lee I. Unified Translation Repression Mechanism for Micrornas and Upstream Augs. BMC Genom. 2010;11:155. doi: 10.1186/1471-2164-11-155. PubMed DOI PMC
Waterhouse A., Procter J., Martin D., Clamp M., Barton G. Jalview Version 2—A Multiple Sequence Alignment Editor and Analysis Workbench. Bioinformatics. 2009;25:1189–1191. doi: 10.1093/bioinformatics/btp033. PubMed DOI PMC
Hernández G., Osnaya V., Pérez-Martínez X. Conservation and Variability of the AUG Initiation Codon Context in Eukaryotes. Trends Biochem. Sci. 2019;44:1009–1021. doi: 10.1016/j.tibs.2019.07.001. PubMed DOI
Doluca O. G4catchall: A G-Quadruplex Prediction Approach Considering Atypical Features. J. Theor. Biol. 2019;463:92–98. doi: 10.1016/j.jtbi.2018.12.007. PubMed DOI
Hlavac V., Kovacova M., Elsnerova K., Brynychova V., Kozevnikovova R., Raus K., Kopeckova K., Mestakova S., Vrana D., Gatek J., et al. Use of Germline Genetic Variability for Prediction of Chemoresistance and Prognosis of Breast Cancer Patients. Cancers. 2018;10:511. doi: 10.3390/cancers10120511. PubMed DOI PMC