Stacking sequence variations in vaterite resolved by precession electron diffraction tomography using a unified superspace model

. 2019 Jun 24 ; 9 (1) : 9156. [epub] 20190624

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31235777
Odkazy

PubMed 31235777
PubMed Central PMC6591425
DOI 10.1038/s41598-019-45581-6
PII: 10.1038/s41598-019-45581-6
Knihovny.cz E-zdroje

As a metastable phase, vaterite is involved in the first step of crystallization of several carbonate-forming systems including the two stable polymorphs calcite and aragonite. Its complete structural determination would consequently shed important light to understand scaling formation and biomineralization processes. While vaterite's hexagonal substructure (a0 ~ 4.1 Å and c0 ~ 8.5 Å) and the organization of the carbonate groups within a single layer is known, conflicting interpretations regarding the stacking sequence remain and preclude the complete understanding of the structure. To resolve the ambiguities, we performed precession electron diffraction tomography (PEDT) to collect single crystal data from 100 K to the ambient temperature. The structure was solved ab initio and described over all the temperature range using a unified modulated structure model in the superspace group C12/c1(α0γ)00 with a = a0 = 4.086(3) Å, b = [Formula: see text]a0 = 7.089(9) Å, c = c0 = 8.439(9) Å, α = β = γ = 90° and q = [Formula: see text]a* + γc*. At 100 K the model presents a pure 4-layer stacking sequence with γ = [Formula: see text] whereas at the ambient temperature, ordered stacking faults are introduced leading to γ < [Formula: see text]. The model was refined against PEDT data using the dynamical refinement procedure including modulation and twinning as well as against x-ray powder data by the Rietveld refinement.

Zobrazit více v PubMed

Ariani AP, Wittmann KJ, Franco E. A comparative study of static bodies in mysid crustaceans: evolutionary implications of crystallographic characteristics. Biol. Bull. 1993;185:393–404. doi: 10.2307/1542480. PubMed DOI

Qiao L, Feng QL. Study on twin stacking faults in vaterite tablets of freshwater lacklustre pearls. Journal of Crystal Growth. 2007;304:253–256. doi: 10.1016/j.jcrysgro.2007.02.001. DOI

Frenzel M, Harrison RJ, Harper EM. Nanostructure and crystallography of aberrant columnar vaterite in Corbicula fluminea (Mollusca) J. struct. Biol. 2012;178:8–18. doi: 10.1016/j.jsb.2012.02.005. PubMed DOI

David AW, Grimes CB, Isely JJ. Vaterite Sagittal Otoliths in Hatchery-Reared Juvenile Red Drums. The Progressive Fish-Culturist. 1994;56:301–303. doi: 10.1577/1548-8640(1994)056<0301:VSOIHR>2.3.CO;2. DOI

Lowenstam HA, Abbott DP. Vaterite: a mineralization product of the hard tissues of a marine organism (Ascidiacea) Science. 1975;188:363–365. doi: 10.1126/science.1118730. PubMed DOI

Kanakis J, Malkaj P, Petroheilos J, Dalas E. The crystallization of calcium carbonate on porcine and human cardiac valves and the antimineralization effect of sodium alginate. J. Cryst. Growth. 2001;223:557–564. doi: 10.1016/S0022-0248(01)00698-4. DOI

Dalas E, Koutsoukos PG. Calcium carbonate scale formation and prevention in a flow-through system at various temperatures. Desalination. 1990;78:403–416. doi: 10.1016/0011-9164(90)80060-O. DOI

Wyckoff RWG. The crystal structure of some carbinates of the calcite group. Cryst. Growth Des. 2017;17:3567–3578. doi: 10.1021/acs.cgd.7b00481. DOI

Jarosch D, Heger G. Neutron diffraction refinement of the crystal structure of Aragonite. TMPM. Tschermaks Mineralogische Mitteilungen. 1986;35:127–131. doi: 10.1007/BF01140844. DOI

Lowenstam HA, Weiner S. On Biomineralization. New York: Oxford University Press; 1989.

Ouhenia S, Chateigner D, Belkhir MA, Guilmeau E, Krauss C. Synthesis of Calcium Carbonate Polymorphs in the Presence of Polyacrylic Acid. J. Cryst. Growth. 2008;310:2832–2841. doi: 10.1016/j.jcrysgro.2008.02.006. DOI

Kamhi SR. On structure of vaterite, CaCO3. Acta Cryst. 1963;A16:770–772. doi: 10.1107/S0365110X63002000. DOI

Meyer HJ. Struktur und Fehlordnung des Vaterits. Z. Kristallogr. 1969;128:183–212. doi: 10.1524/zkri.1969.128.3-6.183. DOI

Olshausen S. Strukturuntersuchungen nach der Debye-Scherrer-Methode. Zeit. Krist. 1924;61:463–514.

McConnell JDC. Vaterite from Ballycraigy, Lame, Northern Ireland. Min. Mag. 1960;32:535.

Le Bail A, Ouhenia S, Chateigner D. Microtwinning hypothesis for a more ordered vaterite model. Powder Diffraction. 2011;26:16–21. doi: 10.1154/1.3552994. DOI

Chakoumakos BC, Pracheil BM, Koenigs RP, Bruch RM, Feygenson M. Empirically testing vaterite structural models using neutron diffraction and thermal analysis. Sci Rep. 2016;6:36799–8. doi: 10.1038/srep36799. PubMed DOI PMC

Mugnaioli E, et al. Ab initio Structure Determination of Vaterite by Automated Electron Diffraction. Angew. Chem. Int. Ed. 2012;51:1–7. doi: 10.1002/anie.201200845. PubMed DOI

Medeiros SK, Albuquerque EL, Maia FF, Jr., Caetano EWS, Freire VN. First-principles calculations of structural absorption properties of CaCO3 Vaterite. Chemical Physics Letters. 2007;435:59–64. doi: 10.1016/j.cplett.2006.12.051. DOI

Wang J, Becker U. Structure and carbonate orientation of vaterite (CaCO3) Am. Mineral. 2009;94:380–386. doi: 10.2138/am.2009.2939. DOI

Demichelis R, Raiteri P, Gale JD, Dovesi R. A new structural model for disorder in vaterite from first-principles calculations. CrystEngComm. 2012;14:44–47. doi: 10.1039/C1CE05976A. DOI

Demichelis R, Raiteri P, Gale JD, Dovesi R. The multiple structure of vaterite. Cryst. Growth Des. 2013;13:2247–2251. doi: 10.1021/cg4002972. DOI

Wang J, Zhang J, Ewing RC, Becker U, Cai Z. Carbonate orientational order and superlattice structure in vaterite. J. Cryst. Growth. 2014;407:78–86. doi: 10.1016/j.jcrysgro.2014.08.028. DOI

Burgess KMN, Bryce DL. On the crystal structure of the vaterite polymorph of CaCO3: A calcium-43 solid state NMR and computational assessment. Solid State Nuclear Magnetic Resonance. 2015;65:75–83. doi: 10.1016/j.ssnmr.2014.08.003. PubMed DOI

Meyer HJ. Uber vaterit und seine struktur. Angew. Chem., Int. Ed. 1959;71:678–678.

Kabalah-Amitai L, et al. Vaterite crystals contain two Interspersed crystal structures. Science. 2013;340:454–456. doi: 10.1126/science.1232139. PubMed DOI

Makovicky E. Vaterite: Interpretation in terms of OD theory and its next of kin. American Mineralogist. 2016;101:1636–1641. doi: 10.2138/am-2016-5324. DOI

Christy AG. A Review of the Structures of Vaterite: The Impossible, the Possible, and the Likely. Cryst. Growth Des. 2017;17:3567–3578. doi: 10.1021/acs.cgd.7b00481. DOI

Ramsdell LS. Studies on silicon carbide. Am. Mineral. 1947;32:64–82.

Meng D, Wu X, Han Y, Meng X. Polytypism and microstructures of the mixed-layer member B2S, CaCe3(CO3)4F3 in the bastnaesite-(Ce)?synchysite-(Ce) series. Earth Planet. Sci. Lett. 2002;203:817–828. doi: 10.1016/S0012-821X(02)00947-0. DOI

Dupont L, Portemer F, Figlarz M. Synthesis and study of a well crystallized CaCO3 vaterite showing a new habitus. J. Mater. Chem. 1997;7:797–800. doi: 10.1039/a607761g. DOI

Qiao L, Feng QL, Liu Y. A novel bio-vaterite in freshwater pearls with high thermal stability and low dissolu- bility. Mater. Lett. 2008;62:1793–1796. doi: 10.1016/j.matlet.2007.10.023. DOI

Oszlanyi G, Suto A. Ab initio structure solution by charge flipping. II. Use of weak reflections. Acta Cryst. 2005;A61:147–152. doi: 10.1107/S0108767304027746. PubMed DOI

Oszlanyi G, Suto A. The charge flipping algorithm. Acta Cryst. 2008;A64:123–134. doi: 10.1107/S0108767307046028. PubMed DOI

Palatinus L, Steurer W, Chapuis G. Extending the charge-flipping method towards structure solution from incomplete data sets. J. Appl. Cryst. 2007;40:456–462. doi: 10.1107/S0021889807007637. DOI

Palatinus L, Chapuis G. SUPERFLIP - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. of Appl. Cryst. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI

Petricek V, Dusek M, Palatinus L. Crystallographic Computing System JANA2006: General features. Z. Kristallogr. 2014;229(5):345–352.

Palatinus L, Petricek V, Correa CA. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Crystallogr. 2015;A71:235–244. PubMed

Palatinus L, et al. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Crystallogr. 2015;B71:740–751. PubMed

Farey J. On a Curious Property of Vulgar Fractions. Philos. Mag. 1816;47:385–386. doi: 10.1080/14786441608628487. DOI

Redfern. SAT. Structural Variations in Carbonates. Mineralogy and Geochemistry. 2000;41(1):289–308. doi: 10.2138/rmg.2000.41.10. DOI

Pokroy B, et al. Atomic structure of biogenic aragonite. Chem. Mat. 2007;19(13):3244–3251. doi: 10.1021/cm070187u. DOI

Caspi EN, Pokroy B, Lee PL, Quintana JP, Zolotoyabko E. On the structure of aragonite. Acta Cryst. B Structural Science. 2005;61:129–132. doi: 10.1107/S0108768105005240. PubMed DOI

Chateigner D, et al. Voyaging around nacre with the X-ray shuttle: From bio-mineralisation to prosthetics via mollusc phylogeny. Materials Science and Engineering. 2010;A528:37–51. doi: 10.1016/j.msea.2010.07.032. DOI

Palatinus L. PETS - program for analysis of electron diffraction data. Prague, Czechia: Institute of Physics of the AS CR; 2011.

Palatinus L, Klementova M, Drinek V, Jarosova M, Petricek V. An Incommensurately Modulated Structure of η’-Phase of Cu3+xSi Determined by Quantitative Electron Diffraction Tomography. Inorg. Chem. 2011;50:3743. doi: 10.1021/ic200102z. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Exotic Compositional Ordering in Manganese-Nickel-Arsenic (Mn-Ni-As) Intermetallics

. 2020 Dec 07 ; 59 (50) : 22382-22387. [epub] 20201013

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace