Stacking sequence variations in vaterite resolved by precession electron diffraction tomography using a unified superspace model
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
31235777
PubMed Central
PMC6591425
DOI
10.1038/s41598-019-45581-6
PII: 10.1038/s41598-019-45581-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
As a metastable phase, vaterite is involved in the first step of crystallization of several carbonate-forming systems including the two stable polymorphs calcite and aragonite. Its complete structural determination would consequently shed important light to understand scaling formation and biomineralization processes. While vaterite's hexagonal substructure (a0 ~ 4.1 Å and c0 ~ 8.5 Å) and the organization of the carbonate groups within a single layer is known, conflicting interpretations regarding the stacking sequence remain and preclude the complete understanding of the structure. To resolve the ambiguities, we performed precession electron diffraction tomography (PEDT) to collect single crystal data from 100 K to the ambient temperature. The structure was solved ab initio and described over all the temperature range using a unified modulated structure model in the superspace group C12/c1(α0γ)00 with a = a0 = 4.086(3) Å, b = [Formula: see text]a0 = 7.089(9) Å, c = c0 = 8.439(9) Å, α = β = γ = 90° and q = [Formula: see text]a* + γc*. At 100 K the model presents a pure 4-layer stacking sequence with γ = [Formula: see text] whereas at the ambient temperature, ordered stacking faults are introduced leading to γ < [Formula: see text]. The model was refined against PEDT data using the dynamical refinement procedure including modulation and twinning as well as against x-ray powder data by the Rietveld refinement.
Institute of Physics of the Czech Academy of Sciences Na Slovance 2 Prague Czech Republic
Laboratoire de Physique Faculté des Sciences et Sciences de l'ingénieur Béjaïa 06200 Algeria
Zobrazit více v PubMed
Ariani AP, Wittmann KJ, Franco E. A comparative study of static bodies in mysid crustaceans: evolutionary implications of crystallographic characteristics. Biol. Bull. 1993;185:393–404. doi: 10.2307/1542480. PubMed DOI
Qiao L, Feng QL. Study on twin stacking faults in vaterite tablets of freshwater lacklustre pearls. Journal of Crystal Growth. 2007;304:253–256. doi: 10.1016/j.jcrysgro.2007.02.001. DOI
Frenzel M, Harrison RJ, Harper EM. Nanostructure and crystallography of aberrant columnar vaterite in Corbicula fluminea (Mollusca) J. struct. Biol. 2012;178:8–18. doi: 10.1016/j.jsb.2012.02.005. PubMed DOI
David AW, Grimes CB, Isely JJ. Vaterite Sagittal Otoliths in Hatchery-Reared Juvenile Red Drums. The Progressive Fish-Culturist. 1994;56:301–303. doi: 10.1577/1548-8640(1994)056<0301:VSOIHR>2.3.CO;2. DOI
Lowenstam HA, Abbott DP. Vaterite: a mineralization product of the hard tissues of a marine organism (Ascidiacea) Science. 1975;188:363–365. doi: 10.1126/science.1118730. PubMed DOI
Kanakis J, Malkaj P, Petroheilos J, Dalas E. The crystallization of calcium carbonate on porcine and human cardiac valves and the antimineralization effect of sodium alginate. J. Cryst. Growth. 2001;223:557–564. doi: 10.1016/S0022-0248(01)00698-4. DOI
Dalas E, Koutsoukos PG. Calcium carbonate scale formation and prevention in a flow-through system at various temperatures. Desalination. 1990;78:403–416. doi: 10.1016/0011-9164(90)80060-O. DOI
Wyckoff RWG. The crystal structure of some carbinates of the calcite group. Cryst. Growth Des. 2017;17:3567–3578. doi: 10.1021/acs.cgd.7b00481. DOI
Jarosch D, Heger G. Neutron diffraction refinement of the crystal structure of Aragonite. TMPM. Tschermaks Mineralogische Mitteilungen. 1986;35:127–131. doi: 10.1007/BF01140844. DOI
Lowenstam HA, Weiner S. On Biomineralization. New York: Oxford University Press; 1989.
Ouhenia S, Chateigner D, Belkhir MA, Guilmeau E, Krauss C. Synthesis of Calcium Carbonate Polymorphs in the Presence of Polyacrylic Acid. J. Cryst. Growth. 2008;310:2832–2841. doi: 10.1016/j.jcrysgro.2008.02.006. DOI
Kamhi SR. On structure of vaterite, CaCO3. Acta Cryst. 1963;A16:770–772. doi: 10.1107/S0365110X63002000. DOI
Meyer HJ. Struktur und Fehlordnung des Vaterits. Z. Kristallogr. 1969;128:183–212. doi: 10.1524/zkri.1969.128.3-6.183. DOI
Olshausen S. Strukturuntersuchungen nach der Debye-Scherrer-Methode. Zeit. Krist. 1924;61:463–514.
McConnell JDC. Vaterite from Ballycraigy, Lame, Northern Ireland. Min. Mag. 1960;32:535.
Le Bail A, Ouhenia S, Chateigner D. Microtwinning hypothesis for a more ordered vaterite model. Powder Diffraction. 2011;26:16–21. doi: 10.1154/1.3552994. DOI
Chakoumakos BC, Pracheil BM, Koenigs RP, Bruch RM, Feygenson M. Empirically testing vaterite structural models using neutron diffraction and thermal analysis. Sci Rep. 2016;6:36799–8. doi: 10.1038/srep36799. PubMed DOI PMC
Mugnaioli E, et al. Ab initio Structure Determination of Vaterite by Automated Electron Diffraction. Angew. Chem. Int. Ed. 2012;51:1–7. doi: 10.1002/anie.201200845. PubMed DOI
Medeiros SK, Albuquerque EL, Maia FF, Jr., Caetano EWS, Freire VN. First-principles calculations of structural absorption properties of CaCO3 Vaterite. Chemical Physics Letters. 2007;435:59–64. doi: 10.1016/j.cplett.2006.12.051. DOI
Wang J, Becker U. Structure and carbonate orientation of vaterite (CaCO3) Am. Mineral. 2009;94:380–386. doi: 10.2138/am.2009.2939. DOI
Demichelis R, Raiteri P, Gale JD, Dovesi R. A new structural model for disorder in vaterite from first-principles calculations. CrystEngComm. 2012;14:44–47. doi: 10.1039/C1CE05976A. DOI
Demichelis R, Raiteri P, Gale JD, Dovesi R. The multiple structure of vaterite. Cryst. Growth Des. 2013;13:2247–2251. doi: 10.1021/cg4002972. DOI
Wang J, Zhang J, Ewing RC, Becker U, Cai Z. Carbonate orientational order and superlattice structure in vaterite. J. Cryst. Growth. 2014;407:78–86. doi: 10.1016/j.jcrysgro.2014.08.028. DOI
Burgess KMN, Bryce DL. On the crystal structure of the vaterite polymorph of CaCO3: A calcium-43 solid state NMR and computational assessment. Solid State Nuclear Magnetic Resonance. 2015;65:75–83. doi: 10.1016/j.ssnmr.2014.08.003. PubMed DOI
Meyer HJ. Uber vaterit und seine struktur. Angew. Chem., Int. Ed. 1959;71:678–678.
Kabalah-Amitai L, et al. Vaterite crystals contain two Interspersed crystal structures. Science. 2013;340:454–456. doi: 10.1126/science.1232139. PubMed DOI
Makovicky E. Vaterite: Interpretation in terms of OD theory and its next of kin. American Mineralogist. 2016;101:1636–1641. doi: 10.2138/am-2016-5324. DOI
Christy AG. A Review of the Structures of Vaterite: The Impossible, the Possible, and the Likely. Cryst. Growth Des. 2017;17:3567–3578. doi: 10.1021/acs.cgd.7b00481. DOI
Ramsdell LS. Studies on silicon carbide. Am. Mineral. 1947;32:64–82.
Meng D, Wu X, Han Y, Meng X. Polytypism and microstructures of the mixed-layer member B2S, CaCe3(CO3)4F3 in the bastnaesite-(Ce)?synchysite-(Ce) series. Earth Planet. Sci. Lett. 2002;203:817–828. doi: 10.1016/S0012-821X(02)00947-0. DOI
Dupont L, Portemer F, Figlarz M. Synthesis and study of a well crystallized CaCO3 vaterite showing a new habitus. J. Mater. Chem. 1997;7:797–800. doi: 10.1039/a607761g. DOI
Qiao L, Feng QL, Liu Y. A novel bio-vaterite in freshwater pearls with high thermal stability and low dissolu- bility. Mater. Lett. 2008;62:1793–1796. doi: 10.1016/j.matlet.2007.10.023. DOI
Oszlanyi G, Suto A. Ab initio structure solution by charge flipping. II. Use of weak reflections. Acta Cryst. 2005;A61:147–152. doi: 10.1107/S0108767304027746. PubMed DOI
Oszlanyi G, Suto A. The charge flipping algorithm. Acta Cryst. 2008;A64:123–134. doi: 10.1107/S0108767307046028. PubMed DOI
Palatinus L, Steurer W, Chapuis G. Extending the charge-flipping method towards structure solution from incomplete data sets. J. Appl. Cryst. 2007;40:456–462. doi: 10.1107/S0021889807007637. DOI
Palatinus L, Chapuis G. SUPERFLIP - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. of Appl. Cryst. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI
Petricek V, Dusek M, Palatinus L. Crystallographic Computing System JANA2006: General features. Z. Kristallogr. 2014;229(5):345–352.
Palatinus L, Petricek V, Correa CA. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Crystallogr. 2015;A71:235–244. PubMed
Palatinus L, et al. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Crystallogr. 2015;B71:740–751. PubMed
Farey J. On a Curious Property of Vulgar Fractions. Philos. Mag. 1816;47:385–386. doi: 10.1080/14786441608628487. DOI
Redfern. SAT. Structural Variations in Carbonates. Mineralogy and Geochemistry. 2000;41(1):289–308. doi: 10.2138/rmg.2000.41.10. DOI
Pokroy B, et al. Atomic structure of biogenic aragonite. Chem. Mat. 2007;19(13):3244–3251. doi: 10.1021/cm070187u. DOI
Caspi EN, Pokroy B, Lee PL, Quintana JP, Zolotoyabko E. On the structure of aragonite. Acta Cryst. B Structural Science. 2005;61:129–132. doi: 10.1107/S0108768105005240. PubMed DOI
Chateigner D, et al. Voyaging around nacre with the X-ray shuttle: From bio-mineralisation to prosthetics via mollusc phylogeny. Materials Science and Engineering. 2010;A528:37–51. doi: 10.1016/j.msea.2010.07.032. DOI
Palatinus L. PETS - program for analysis of electron diffraction data. Prague, Czechia: Institute of Physics of the AS CR; 2011.
Palatinus L, Klementova M, Drinek V, Jarosova M, Petricek V. An Incommensurately Modulated Structure of η’-Phase of Cu3+xSi Determined by Quantitative Electron Diffraction Tomography. Inorg. Chem. 2011;50:3743. doi: 10.1021/ic200102z. PubMed DOI
Exotic Compositional Ordering in Manganese-Nickel-Arsenic (Mn-Ni-As) Intermetallics