Mass Spectrometry Data Repository Enhances Novel Metabolite Discoveries with Advances in Computational Metabolomics

. 2019 Jun 24 ; 9 (6) : . [epub] 20190624

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31238512

Grantová podpora
15H05897, 15H05898, 17H03621, 18H02432, 18K19155 Japan Society for the Promotion of Science
JST National Bioscience Database Center Japan Science and Technology Agency

Mass spectrometry raw data repositories, including Metabolomics Workbench and MetaboLights, have contributed to increased transparency in metabolomics studies and the discovery of novel insights in biology by reanalysis with updated computational metabolomics tools. Herein, we reanalyzed the previously published lipidomics data from nine algal species, resulting in the annotation of 1437 lipids achieving a 40% increase in annotation compared to the previous results. Specifically, diacylglyceryl-carboxyhydroxy-methylcholine (DGCC) in Pavlova lutheri and Pleurochrysis carterae, glucuronosyldiacylglycerol (GlcADG) in Euglena gracilis, and P. carterae, phosphatidylmethanol (PMeOH) in E. gracilis, and several oxidized phospholipids (oxidized phosphatidylcholine, OxPC; phosphatidylethanolamine, OxPE; phosphatidylglycerol, OxPG; phosphatidylinositol, OxPI) in Chlorella variabilis were newly characterized with the enriched lipid spectral databases. Moreover, we integrated the data from untargeted and targeted analyses from data independent tandem mass spectrometry (DIA-MS/MS) acquisition, specifically the sequential window acquisition of all theoretical fragment-ion MS/MS (SWATH-MS/MS) spectra, to increase the lipidomic annotation coverage. After the creation of a global library of precursor and diagnostic ions of lipids by the MS-DIAL untargeted analysis, the co-eluted DIA-MS/MS spectra were resolved in MRMPROBS targeted analysis by tracing the specific product ions involved in acyl chain compositions. Our results indicated that the metabolite quantifications based on DIA-MS/MS chromatograms were somewhat inferior to the MS1-centric quantifications, while the annotation coverage outperformed those of the untargeted analysis of the data dependent and DIA-MS/MS data. Consequently, integrated analyses of untargeted and targeted approaches are necessary to extract the maximum amount of metabolome information, and our results showcase the value of data repositories for the discovery of novel insights in lipid biology.

Zobrazit více v PubMed

Haug K., Salek R.M., Steinbeck C. Global Open Data Management in Metabolomics. Curr. Opin. Chem. Biol. 2017;36:58–63. doi: 10.1016/j.cbpa.2016.12.024. PubMed DOI PMC

Sud M., Fahy E., Cotter D., Azam K., Vadivelu I., Burant C., Edison A., Fiehn O., Higashi R., Nair K.S., et al. Metabolomics Workbench: An International Repository for Metabolomics Data and Metadata, Metabolite Standards, Protocols, Tutorials and Training, and Analysis Tools. Nucleic Acids Res. 2016;44:D463–D470. doi: 10.1093/nar/gkv1042. PubMed DOI PMC

Kale N.S., Haug K., Conesa P., Jayseelan K., Moreno P., Rocca-Serra P., Nainala V.C., Spicer R.A., Williams M., Li X., et al. MetaboLights: An Open-Access Database Repository for Metabolomics Data. Curr. Protoc. Bioinform. 2016;53:14.13.1–14.13.18. PubMed

Wang M., Carver J.J., Phelan V.V., Sanchez L.M., Garg N., Peng Y., Nguyen D.D., Watrous J., Kapono C.A., Luzzatto-Knaan T., et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016;34:828–837. doi: 10.1038/nbt.3597. PubMed DOI PMC

Spicer R.A., Steinbeck C. A Lost Opportunity for Science: Journals Promote Data Sharing in Metabolomics but Do Not Enforce It. Metabolomics. 2018;14 doi: 10.1007/s11306-017-1309-5. PubMed DOI PMC

Tsugawa H., Cajka T., Kind T., Ma Y., Higgins B., Ikeda K., Kanazawa M., VanderGheynst J., Fiehn O., Arita M. MS-DIAL: Data-Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis. Nat. Methods. 2015;12:523–526. doi: 10.1038/nmeth.3393. PubMed DOI PMC

Tsugawa H., Ikeda K., Tanaka W., Senoo Y., Arita M., Arita M. Comprehensive Identification of Sphingolipid Species by in Silico Retention Time and Tandem Mass Spectral Library. J. Cheminform. 2017;9:19. doi: 10.1186/s13321-017-0205-3. PubMed DOI PMC

Tsugawa H., Ikeda K., Arita M. The importance of bioinformatics for connecting data-driven lipidomics and biological insights. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862:762–765. doi: 10.1016/j.bbalip.2017.05.006. PubMed DOI

Tsugawa H., Nakabayashi R., Mori T., Yamada Y., Takahashi M., Rai A., Sugiyama R., Yamamoto H., Nakaya T., Yamazaki M., et al. A Cheminformatics Approach to Characterize Metabolomes in Stable-Isotope-Labeled Organisms. Nat. Methods. 2019;16:295–298. doi: 10.1038/s41592-019-0358-2. PubMed DOI

Tsugawa H., Arita M., Kanazawa M., Ogiwara A., Bamba T., Fukusaki E. MRMPROBS: A Data Assessment and Metabolite Identification Tool for Large-Scale Multiple Reaction Monitoring Based Widely Targeted Metabolomics. Anal. Chem. 2013;85:5191–5199. doi: 10.1021/ac400515s. PubMed DOI

Tsugawa H., Kanazawa M., Ogiwara A., Arita M. MRMPROBS Suite for Metabolomics Using Large-Scale MRM Assays. Bioinformatics. 2014;30:2379–2380. doi: 10.1093/bioinformatics/btu203. PubMed DOI

Lai Z., Tsugawa H., Wohlgemuth G., Mehta S., Mueller M., Zheng Y., Ogiwara A., Meissen J., Showalter M., Takeuchi K., et al. Identifying Metabolites by Integrating Metabolome Databases with Mass Spectrometry Cheminformatics. Nat. Methods. 2017;15:53–56. doi: 10.1038/nmeth.4512. PubMed DOI PMC

Mahieu N.G., Genenbacher J.L., Patti G.J. A Roadmap for the XCMS Family of Software Solutions in Metabolomics. Curr. Opin. Chem. Biol. 2016;30:87–93. doi: 10.1016/j.cbpa.2015.11.009. PubMed DOI PMC

Pluskal T., Castillo S., Villar-Briones A., Oresic M. MZmine 2: Modular Framework for Processing, Visualizing, and Analyzing Mass Spectrometry-Based Molecular Profile Data. BMC Bioinform. 2010;11:395. doi: 10.1186/1471-2105-11-395. PubMed DOI PMC

Li H., Cai Y., Guo Y., Chen F., Zhu Z.J. MetDIA: Targeted Metabolite Extraction of Multiplexed MS/MS Spectra Generated by Data-Independent Acquisition. Anal. Chem. 2016;88:8757–8764. doi: 10.1021/acs.analchem.6b02122. PubMed DOI

Perez-Riverol Y., Bai M., da Veiga Leprevost F., Squizzato S., Park Y.M., Haug K., Carroll A.J., Spalding D., Paschall J., Wang M., et al. Discovering and Linking Public Omics Data Sets Using the Omics Discovery Index. Nat. Biotechnol. 2017;35:406–409. doi: 10.1038/nbt.3790. PubMed DOI PMC

Koellensperger G., Guijas C., Benton H.P., Huan T., Wolan D.W., Warth B., Aisporna A.E., Hermann G., Domingo-Almenara X., Spilker M.E., et al. METLIN: A Technology Platform for Identifying Knowns and Unknowns. Anal. Chem. 2018;90:3156–3164. PubMed PMC

Kind T., Liu K.-H., Lee D.Y., DeFelice B., Meissen J.K., Fiehn O. LipidBlast in Silico Tandem Mass Spectrometry Database for Lipid Identification. Nat. Methods. 2013;10:755–758. doi: 10.1038/nmeth.2551. PubMed DOI PMC

Eichenberger W., Gribi C. Lipids of Pavlova Lutheri: Cellular Site and Metabolic Role of DGCC. Phytochemistry. 1997;45:1561–1567. doi: 10.1016/S0031-9422(97)00201-X. DOI

Schleyer G., Shahaf N., Ziv C., Dong Y., Meoded R.A., Helfrich E.J.N., Schatz D., Rosenwasser S., Rogachev I., Aharoni A., et al. In Plaque-Mass Spectrometry Imaging of a Bloom-Forming Alga during Viral Infection Reveals a Metabolic Shift towards Odd-Chain Fatty Acid Lipids. Nat. Microbiol. 2019;4:527–538. doi: 10.1038/s41564-018-0336-y. PubMed DOI PMC

Aoyagi R., Ikeda K., Isobe Y., Arita M. Comprehensive Analyses of Oxidized Phospholipids Using a Measured MS/MS Spectra Library. J. Lipid Res. 2017;58:2229–2237. doi: 10.1194/jlr.D077123. PubMed DOI PMC

Okazaki Y., Otsuki H., Narisawa T., Kobayashi M., Sawai S., Kamide Y., Kusano M., Aoki T., Hirai M.Y., Saito K. A New Class of Plant Lipid Is Essential for Protection against Phosphorus Depletion. Nat. Commun. 2013;4:1510. doi: 10.1038/ncomms2512. PubMed DOI PMC

Li Y., Lou Y., Mu T., Xu J., Zhou C., Yan X. Simultaneous Structural Identification of Diacylglyceryl-N-Trimethylhomoserine (DGTS) and Diacylglycerylhydroxymethyl-N, N, N-Trimethyl-β-Alanine (DGTA) in Microalgae Using Dual Li+/H+ Adduct Ion Mode by Ultra-Performance Liquid Chromatography/Quadrupole Time-Of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2017;31:824. PubMed

Okazaki Y., Nishizawa T., Takano K., Ohnishi M., Mimura T., Saito K. Induced accumulation of glucuronosyldiacylglycerol in tomato and soybean under phosphorus deprivation. Physiol. Plant. 2015;155:33–42. doi: 10.1111/ppl.12334. PubMed DOI

Roughan P.G., Slack C.R., Holland R. Generation of phospholipid artefacts during extraction of developing soybean seeds with methanolic solvents. Lipids. 1978;13:497–503. doi: 10.1007/BF02533620. DOI

Reis A., Spickett C.M. Chemistry of Phospholipid Oxidation. Biochim. Biophys. Acta-Biomembr. 2012;1818:2374–2387. doi: 10.1016/j.bbamem.2012.02.002. PubMed DOI

Bonnera R., Hopfgartner G. SWATH data independent acquisition mass spectrometry for metabolomics. TrAc Trends Anal. Chem. 2018 doi: 10.1016/j.trac.2018.10.014. DOI

Ohlrogge J., Browse J. Lipid Biosynthesis. Plant Cell. 2007;7:957–970. doi: 10.1105/tpc.7.7.957. PubMed DOI PMC

Matsuda F., Tsugawa H., Fukusaki E. Method for Assessing the Statistical Significance of Mass Spectral Similarities Using Basic Local Alignment Search Tool Statistics. Anal. Chem. 2013;85:8291–8297. doi: 10.1021/ac401564v. PubMed DOI

Palmer A., Phapale P., Chernyavsky I., Lavigne R., Fay D., Tarasov A., Kovalev V., Fuchser J., Nikolenko S., Pineau C., et al. FDR-Controlled Metabolite Annotation for High-Resolution Imaging Mass Spectrometry. Nat. Methods. 2016;14:57–60. doi: 10.1038/nmeth.4072. PubMed DOI

Scheubert K., Hufsky F., Petras D., Wang M., Nothias L.-F., Dührkop K., Bandeira N., Dorrestein P.C., Böcker S. Significance Estimation for Large Scale Metabolomics Annotations by Spectral Matching. Nat. Commun. 2017;8:1494. doi: 10.1038/s41467-017-01318-5. PubMed DOI PMC

Pham T.H., Zaeem M., Fillier T.A., Nadeem M., Vidal N.P., Manful C., Cheema S., Cheema M., Thomas R.H. Targeting Modified Lipids during Routine Lipidomics Analysis Using HILIC and C30 Reverse Phase Liquid Chromatography Coupled to Mass Spectrometry. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-41556-9. PubMed DOI PMC

Lísa M., Holčapek M. High-Throughput and Comprehensive Lipidomic Analysis Using Ultrahigh-Performance Supercritical Fluid Chromatography-Mass Spectrometry. Anal. Chem. 2015;87:7187–7195. doi: 10.1021/acs.analchem.5b01054. PubMed DOI

Blaženović I., Shen T., Mehta S.S., Kind T., Ji J., Piparo M., Cacciola F., Mondello L., Fiehn O. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time-Ion Mobility Mass Spectrometry. Anal. Chem. 2018;90:10758–10764. doi: 10.1021/acs.analchem.8b01527. PubMed DOI

Horai H., Arita M., Kanaya S., Nihei Y., Ikeda T., Suwa K., Ojima Y., Tanaka K., Tanaka S., Aoshima K., et al. MassBank: A Public Repository for Sharing Mass Spectral Data for Life Sciences. J. Mass Spectrom. 2010;45:703–714. doi: 10.1002/jms.1777. PubMed DOI

Kind T., Wohlgemuth G., Lee D.Y., Lu Y., Palazoglu M., Shahbaz S., Fiehn O. FiehnLib: Mass Spectral and Retention Index Libraries for Metabolomics Based on Quadrupole and Time-of-Flight Gas Chromatography/Mass Spectrometry. Anal. Chem. 2009;81:10038–10048. doi: 10.1021/ac9019522. PubMed DOI PMC

Tsugawa H. Advances in Computational Metabolomics and Databases Deepen the Understanding of Metabolisms. Curr. Opin. Biotechnol. 2018;54:10–17. doi: 10.1016/j.copbio.2018.01.008. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Guiding the choice of informatics software and tools for lipidomics research applications

. 2023 Feb ; 20 (2) : 193-204. [epub] 20221221

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...