Identification of sex determination genes and their evolution in Phlebotominae sand flies (Diptera, Nematocera)
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Grant STAR2013_25
Università degli Studi di Napoli Federico II
Grant STAR2013_25
Compagnia di San Paolo
PubMed
31238870
PubMed Central
PMC6593557
DOI
10.1186/s12864-019-5898-4
PII: 10.1186/s12864-019-5898-4
Knihovny.cz E-zdroje
- Klíčová slova
- Alternative splicing, Genomic data mining, Nematocera, Sand fly, Sex determination, Transformer,
- MeSH
- alternativní sestřih MeSH
- data mining MeSH
- fylogeneze MeSH
- genomika MeSH
- hmyzí proteiny chemie genetika MeSH
- messenger RNA genetika MeSH
- molekulární evoluce * MeSH
- procesy určující pohlaví genetika MeSH
- Psychodidae genetika MeSH
- sekvence aminokyselin MeSH
- selekce (genetika) MeSH
- stanovení celkové genové exprese MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hmyzí proteiny MeSH
- messenger RNA MeSH
BACKGROUND: Phlebotomine sand flies (Diptera, Nematocera) are important vectors of several pathogens, including Leishmania parasites, causing serious diseases of humans and dogs. Despite their importance as disease vectors, most aspects of sand fly biology remain unknown including the molecular basis of their reproduction and sex determination, aspects also relevant for the development of novel vector control strategies. RESULTS: Using comparative genomics/transcriptomics data mining and transcriptional profiling, we identified the sex determining genes in phlebotomine sand flies and proposed the first model for the sex determination cascade of these insects. For all the genes identified, we produced manually curated gene models, developmental gene expression profile and performed evolutionary molecular analysis. We identified and characterized, for the first time in a Nematocera species, the transformer (tra) homolog which exhibits both conserved and novel features. The analysis of the tra locus in sand flies and its expression pattern suggest that this gene is able to autoregulate its own splicing, as observed in the fruit fly Ceratitis capitata and several other insect species. CONCLUSIONS: Our results permit to fill the gap about sex determination in sand flies, contribute to a better understanding of this developmental pathway in Nematocera and open the way for the identification of sex determining orthologs in other species of this important Diptera sub-order. Furthermore, the sex determination genes identified in our work also provide the opportunity of future biotechnological applications to control natural population of sand flies, reducing their impact on public health.
Department of Biology University of Naples Federico 2 Naples Italy
Department of Neuroscience Scuola Internazionale Superiore di Studi Avanzati Trieste Italy
Department of Parasitology Charles University Prague Czech Republic
National Research Council Institute of Genetics and Biophysics Naples Italy
Zobrazit více v PubMed
Haag ES, Doty AV. Sex determination across evolution: Connecting the dots. PLoS Biol. 2005;3(1):e21. PubMed PMC
Zarkower D. Establishing sexual dimorphism: conservation amidst diversity? Nat Rev Genet. 2001;2:175–185. doi: 10.1038/35056032. PubMed DOI
Marshall Graves JA. Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Annu Rev Genet. 2008;42:565–86. PubMed
Verhulst EC, Van De Zande L. Insect sex determination: a cascade of mechanisms. Sex Dev. 2014;8:5–6. doi: 10.1159/000358405. PubMed DOI
Sánchez L. Sex-determining mechanisms in insects. Int J Dev Biol. 2008;52:837–56. PubMed
Gempe T, Beye M. Function and evolution of sex determination mechanisms, genes and pathways in insects. BioEssays. 2011;33:52–60. doi: 10.1002/bies.201000043. PubMed DOI PMC
Schütt C, Nöthiger R. Structure, function and evolution of sex-determining systems in dipteran insects. Development. 2000;127:667–677. PubMed
Erickson JW, Quintero JJ. Indirect effects of ploidy suggest X chromosome dose, not the X:a ratio, signals sex in Drosophila. PLoS Biol. 2007;5:2821–2830. doi: 10.1371/journal.pbio.0050332. PubMed DOI PMC
Saccone G, Pane A, Polito LC. Sex determination in flies, fruitflies and butterflies. Genetica. 2002;116:15–23. doi: 10.1023/A:1020903523907. PubMed DOI
Bopp D, Saccone G, Beye M. Sex determination in insects: variations on a common theme. Sex Dev. 2014;8:20–28. doi: 10.1159/000356458. PubMed DOI
Sharma A, Heinze SD, Wu Y, Kohlbrenner T, Morilla I, Brunner C, et al. Male sex in houseflies is determined by Mdmd, a paralog of the generic splice factor gene CWC22. Science. 2017;356:642–645. doi: 10.1126/science.aam5498. PubMed DOI
Pane A, Salvemini M, Delli Bovi P, Polito C, Saccone G. The transformer gene in Ceratitis capitata provides a genetic basis for selecting and remembering the sexual fate. Development. 2002;129:3715–3725. PubMed
Salvemini M, Robertson M, Aronson B, Atkinson P, Polito LC, Saccone G. Ceratitis capitata transformer-2 gene is required to establish and maintain the autoregulation of Cctra, the master gene for female sex determination. Int J Dev Biol. 2009;53:109–120. doi: 10.1387/ijdb.082681ms. PubMed DOI
Verhulst EC, van de Zande L, Beukeboom LW. Insect sex determination: it all evolves around transformer. Curr Opin Genet Dev. 2010;20:376–383. doi: 10.1016/j.gde.2010.05.001. PubMed DOI
Katsuma S, Kiuchi T, Kawamoto M, Fujimoto T, Sahara K. Unique sex determination system in the silkworm, Bombyx mori: current status and beyond. Proc Jpn Acad Ser B. 2018;94:205. PubMed PMC
Saccone G, Salvemini M, Polito LC. The transformer gene of Ceratitis capitata: a paradigm for a conserved epigenetic master regulator of sex determination in insects. Genetica. 2011;139:99–111. doi: 10.1007/s10709-010-9503-7. PubMed DOI
Ruiz MF, Milano A, Salvemini M, Eirín-López JM, Perondini ALP, Selivon D, et al. The gene transformer of anastrepha fruit flies (Diptera, tephritidae) and its evolution in insects. PLoS One. 2007;2:e1239. PubMed PMC
Li F, Vensko SP, Belikoff EJ, Scott MJ. Conservation and sex-specific splicing of the transformer gene in the Calliphorids Cochliomyia hominivorax, Cochliomyia macellaria and Lucilia sericata. PLoS One. 2013;8:1–14. PubMed PMC
Hediger M, Henggeler C, Meier N, Perez R, Saccone G, Bopp D. Molecular characterization of the key switch F provides a basis for understanding the rapid divergence of the sex-determining pathway in the housefly. Genetics. 2010;184:155–170. doi: 10.1534/genetics.109.109249. PubMed DOI PMC
Concha C, Scott MJ. Sexual development in Lucilia cuprina (Diptera, Calliphoridae) is controlled by the transformer gene. Genetics. 2009;182:785–798. doi: 10.1534/genetics.109.100982. PubMed DOI PMC
Luo Y, Zhao S, Li J, Li P, Yan R. Isolation and molecular characterization of the transformer gene from Bactrocera cucurbitae (Diptera: Tephritidae). J Insect Sci. 2017;17(2). PubMed PMC
Laohakieat K, Aketarawong N, Isasawin S, Thitamadee S, Thanaphum S. The study of the transformer gene from Bactrocera dorsalis and B. correcta with putative core promoter regions. BMC Genet. 2016;17:34. PubMed PMC
Salvemini M, D’Amato R, Petrella V, Aceto S, Nimmo D, Neira M, et al. The orthologue of the fruitfly sex behaviour gene fruitless in the mosquito Aedes aegypti: evolution of genomic organisation and alternative splicing. PLoS One. 2013;8:e48554. doi: 10.1371/journal.pone.0048554. PubMed DOI PMC
Salvemini M, Mauro U, Lombardo F, Milano A, Zazzaro V, Arcà B, et al. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti. BMC Evol Biol. 2011;11:41. doi: 10.1186/1471-2148-11-41. PubMed DOI PMC
Gailey DA, Billeter JC, Liu JH, Bauzon F, Allendorfer JB, Goodwin SF. Functional conservation of the fruitless male sex-determination gene across 250 Myr of insect evolution. Mol Biol Evol. 2006;23:633–643. doi: 10.1093/molbev/msj070. PubMed DOI
Scali C. Identification of sex-specific transcripts of the Anopheles gambiae doublesex gene. J Exp Biol. 2005;208:3701–9. PubMed PMC
Criscione F, Qi Y, Tu Z. GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in anopheles Stephensi. Elife. 2016;5. PubMed PMC
Krzywinska E, Dennison NJ, Lycett GJ, Krzywinski J. A maleness gene in the malaria mosquito Anopheles gambiae. Science. 2016;353:67–69. doi: 10.1126/science.aaf5605. PubMed DOI
Hall AB, Basu S, Jiang X, Qi Y, Timoshevskiy VA, Biedler JK, et al. A male-determining factor in the mosquito Aedes aegypti. Science. 2015;348:1268–1270. doi: 10.1126/science.aaa2850. PubMed DOI PMC
Biedler JK, Tu Z. Advances in Insect Physiology. 2016. Sex determination in mosquitoes; pp. 37–66.
Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27:123–147. doi: 10.1111/j.1365-2915.2012.01034.x. PubMed DOI
Young DG, Duncan MA. Guide of the identification and geografic distribution of Lutzomyia sand flies in Mexico, West Indies, central and South America (Diptera: Psychodidae) Mem Am Entomol Inst. 1994;54:1–881.
WHO . Control of the Leishmaniases. Geneva: World Health Organization; 2010.
Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5):e35671. PubMed PMC
Depaquit J, Grandadam M, Fouque F, Andry PE, Peyrefitte C. Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: a review. Euro Surveill. 2010;15:19507. PubMed
Volff JN, Zarkower D, Bardwell VJ, Schartl M. Evolutionary dynamics of the DM domain gene family in metazoans. J Mol Evol. 2003;57 Suppl 1:S241-9. PubMed
Perez-Torrado R, Yamada D, Defossez PA. Born to bind: the BTB protein-protein interaction domain. BioEssays. 2006;28:1194–1202. doi: 10.1002/bies.20500. PubMed DOI
Cléry A, Blatter M, Allain FHT. RNA recognition motifs: boring? Not quite. Curr Opin Struct Biol. 2008;18:290–298. doi: 10.1016/j.sbi.2008.04.002. PubMed DOI
Geuverink E, Beukeboom LW. Phylogenetic distribution and evolutionary dynamics of the sex determination genes doublesex and transformer in insects. Sex Dev. 2014;8:38–49. doi: 10.1159/000357056. PubMed DOI
Petrella V, Aceto S, Musacchia F, Colonna V, Robinson M, Benes V, et al. De novo assembly and sex-specific transcriptome profiling in the sand fly Phlebotomus perniciosus (Diptera, Phlebotominae), a major Old World vector of Leishmania infantum. BMC Genomics. 2015;16:847. PubMed PMC
McAllister BF, McVean GAT. Neutral evolution of the sex-determining gene transformer in Drosophila. Genetics. 2000;154:1711–1720. PubMed PMC
Kulathinal RJ, Skwarek L, Morton RA, Singh RS. Rapid evolution of the sex-determining gene, transformer: structural diversity and rate heterogeneity among sibling species of drosophila. Mol Biol Evol. 2003;20:441–452. doi: 10.1093/molbev/msg053. PubMed DOI
Serna E, Gorab E, Ruiz MF, Goday C, Eirín-López JM, Sánchez L. The gene sex-lethal of the sciaridae family (order diptera, suborder nematocera) and its phylogeny in dipteran insects. Genetics. 2004;168:907–921. doi: 10.1534/genetics.104.031278. PubMed DOI PMC
Traut W, Niimi T, Ikeo K, Sahara K. Phylogeny of the sex-determining gene Sex-lethal in insects. Genome. 2006;49:254–62. PubMed
Meise M, Hilfiker-Kleiner D, Dübendorfer A, Brunner C, Nöthiger R, Bopp D. Sex-lethal, the master sex-determining gene in Drosophila, is not sex-specifically regulated in Musca domestica. Development. 1998;125:1487–1494. PubMed
Saccone G, Peluso I, Artiaco D, Giordano E, Bopp D, Polito LC. The Ceratitis capitata homologue of the Drosophila sex-determining gene sex-lethal is structurally conserved, but not sex-specifically regulated. Development. 1998;125:1495–1500. PubMed
Graham P, Penn JKM, Schedl P. Masters change, slaves remain. BioEssays. 2003;25:1–4. doi: 10.1002/bies.10207. PubMed DOI
Xie W, Guo L, Jiao X, Yang N, Yang X, Wu Q, et al. Transcriptomic dissection of sexual differences in Bemisia tabaci, an invasive agricultural pest worldwide. Sci Rep. 2014;4:4088. PubMed PMC
Hedley ML, Maniatis T. Sex-specific splicing and polyadenylation of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro. Cell. 1991;65:579–586. doi: 10.1016/0092-8674(91)90090-L. PubMed DOI
Baker BS, Heinrichs V, Ryner LC. Regulation of sex-specific selection of fruitless 5′ splice sites by transformer and transformer-2. Mol Cell Biol. 1998;18:450–458. doi: 10.1128/MCB.18.1.450. PubMed DOI PMC
Burghardt G, Hediger M, Siegenthaler C, Moser M, Dübendorfer A, Bopp D. The transformer2 gene in Musca domestica is required for selecting and maintaining the female pathway of development. Dev Genes Evol. 2005;215:165–176. doi: 10.1007/s00427-004-0464-7. PubMed DOI
Burtis KC, Baker BS. Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell. 1989;56:997–1010. doi: 10.1016/0092-8674(89)90633-8. PubMed DOI
Saccone G, Salvemini M, Pane A, Polito LC. Masculinization of XX Drosophila transgenic flies expressing the Ceratitis capitata DoublesexM isoform. Int J Dev Biol. 2008;52:1051–7. PubMed
Salvemini M, Polito C, Saccone G. Fruitless alternative splicing and sex behaviour in insects: an ancient and unforgettable love story? J Genet. 2010;89:287–99. PubMed
Salikhov K, Sacomoto G, Kucherov G. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2013. Using cascading bloom filters to improve the memory usage for de Brujin graphs; pp. 364–376.
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Philip D, Bowden J, et al. Reference generation and analysis with trinity. Nat Protoc. 2014;8:1–43. PubMed PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, et al. The genome sequence of silkworm, Bombyx mori. DNA Res. 2004;11:27–35. doi: 10.1093/dnares/11.1.27. PubMed DOI
Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis. 2016;10(3):e0004349. PubMed PMC
Belote JM, Baker BS. Sex determination in Drosophila melanogaster: analysis of transformer-2, a sex-transforming locus. Proc Natl Acad Sci U S A. 1982;79:1568–72. PubMed PMC
Goralski TJ, Edström JE, Baker BS. The sex determination locus transformer-2 of Drosophila encodes a polypeptide with similarity to RNA binding proteins. Cell. 1989;56:1011–1018. doi: 10.1016/0092-8674(89)90634-X. PubMed DOI
Chandler D, McGuffin ME, Piskur J, Yao J, Baker BS, Mattox W. Evolutionary conservation of regulatory strategies for the sex determination factor transformer-2. Mol Cell Biol. 1997;17:2908–19. PubMed PMC
Gomulski LM, Dimopoulos G, Xi Z, Soares MB, Bonaldo MF, Malacrida AR, et al. Gene discovery in an invasive tephritid model pest species, the Mediterranean fruit fly, Ceratitis capitata. BMC Genomics. 2008;9:243. doi: 10.1186/1471-2164-9-243. PubMed DOI PMC
Sarno F, Ruiz MF, Eirín-López JM, Perondini AL, Selivon D, Sánchez L. The gene transformer-2 of Anastrepha fruit flies (Diptera, Tephritidae) and its evolution in insects. BMC Evol Biol. 2010;10:140. PubMed PMC
Martín I, Ruiz MF, Sánchez L. The gene transformer-2 of Sciara (Diptera, Nematocera) and its effect on Drosophila sexual development. BMC Dev Biol. 2011;11:19. PubMed PMC
Dauwalder B, Amaya-Manzanares F, Mattox W. A human homologue of the Drosophila sex determination factor transformer-2 has conserved splicing regulatory functions. Proc Natl Acad Sci. 1996;93:9004–9. PubMed PMC
Liu G, Wu Q, Li J, Zhang G, Wan F. RNAi-mediated knock-down of transformer and transformer 2 to generate male-only progeny in the oriental fruit fly, Bactrocera dorsalis (Hendel). PLoS One. 2015;10(6):e0128892. PubMed PMC
Hoang KP, Teo TM, Ho TX, Le VS. Mechanisms of sex determination and transmission ratio distortion in Aedes aegypti. Parasit Vectors. 2016;9:49. PubMed PMC
Hediger M, Burghardt G, Siegenthaler C, Buser N, Hilfiker-Kleiner D, Dübendorfer A, et al. Sex determination in Drosophila melanogaster and Musca domestica converges at the level of the terminal regulator doublesex. Dev Genes Evol. 2004;214:29–42. doi: 10.1007/s00427-003-0372-2. PubMed DOI
Kuhn S, Sievert V, Traut W. The sex-determining gene doublesex in the fly Megaselia scalaris: conserved structure and sex-specific splicing. Genome. 2000;43:1011–20. PubMed
Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol. 2018;36:1062–1066. doi: 10.1038/nbt.4245. PubMed DOI PMC
Ryner LC, Baker BS. Regulation of doublesex pre-mRNA processing occurs by 3′-splice site activation. Genes Dev. 1991;5:2071–2085. doi: 10.1101/gad.5.11.2071. PubMed DOI
Hoshijima K, Inoue K, Higuchi I, Sakamoto H, Shimura Y. Control of doublesex alternative splicing by transformer and transformer-2 in Drosophila. Science. 1991;252:833–836. doi: 10.1126/science.1902987. PubMed DOI
Ruiz MF, Alvarez M, Eirín-López JM, Sarno F, Kremer L, Barbero JL, et al. An unusual role for doublesex in sex determination in the dipteran Sciara. Genetics. 2015;200:1181–1199. doi: 10.1534/genetics.115.177972. PubMed DOI PMC
Price DC, Egizi A, Fonseca DM. Characterization of the doublesex gene within the Culex pipiens complex suggests regulatory plasticity at the base of the mosquito sex determination cascade. BMC Evol Biol. 2015;15:108. PubMed PMC
Yang Z, Nielsen R. Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol. 1998;46:409–418. doi: 10.1007/PL00006320. PubMed DOI
Yang Z, Wong WSW, Nielsen R. Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol. 2005;22:1107–1118. doi: 10.1093/molbev/msi097. PubMed DOI
Zhang J, Nielsen R, Yang Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol. 2005;22:2472–2479. doi: 10.1093/molbev/msi237. PubMed DOI
Kreutzer RD, Modi GB, Tesh RB, Young DG. Brain cell karyotypes of six species of new and Old World sand flies (Diptera: Psychodidae) J Med Entomol. 1987;24:609–612. doi: 10.1093/jmedent/24.6.609. PubMed DOI
Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A, Waters PD, et al. Origins and functional evolution of Y chromosomes across mammals. Nature. 2014;508:488–93. PubMed
Blackmon H, Ross L, Bachtrog D. Sex Determination, Sex Chromosomes, and Karyotype Evolution in Insects. J Hered. 2016:esw047. PubMed PMC
Kaiser VB, Bachtrog D. Evolution of sex chromosomes in insects. Annu Rev Genet. 2010;44:91–112. PubMed PMC
Vyskot B. Y Chromosome Evolution. In: Brenner’s Encyclopedia of Genetics. 2. 2013. pp. 372–375.
Papathanos PA, Bossin HC, Benedict MQ, Catteruccia F, Malcolm CA, Alphey L, et al. Sex separation strategies: past experience and new approaches. Malar J. 2009;8(Suppl 2):S5. doi: 10.1186/1475-2875-8-S2-S5. PubMed DOI PMC
Hendrichs J, Robinson A. Encyclopedia of Insects. 2009. Sterile Insect Technique; pp. 953–957.
Saccone G, Pane A, De Simone A, Salvemini M, Milano A, Annunziata L, et al. New Sexing Strains for Mediterranean Fruit Fly Ceratitis capitata: Transforming Females into Males. In: Vreysen M.J.B., Robinson A.S., Hendrichs J. (eds) Area-Wide Control of Insect Pests. Dordrecht: Springer; 2007. p. 95-102.
Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36 Suppl 1:S1-9. PubMed
Sudhir Kumar, Glen Stecher, Koichiro Tamura, (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33 (7):1870-1874 PubMed PMC
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007; 24(8):1586-91. PubMed