Study of in vitro interaction between Fusarium verticillioides and Streptomyces sp. using metabolomics

. 2020 Apr ; 65 (2) : 303-314. [epub] 20190628

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31250362
Odkazy

PubMed 31250362
DOI 10.1007/s12223-019-00725-z
PII: 10.1007/s12223-019-00725-z
Knihovny.cz E-zdroje

The Streptomyces sp. strain AV05 isolated from an organic amendment was found to impact both growth and fumonisin production of Fusarium verticillioides during in vitro direct confrontation. In order to investigate the interactions between the Streptomyces sp. strain AV05 and F. verticillioides, a metabolomic approach was used. The study of the endometabolomes of the microorganisms was carried out in two different conditions: the microorganisms were cultivated alone or in confrontation. The aim of this study was to examine the modifications of the endometabolome of F. verticillioides in confrontation with the Streptomyces strain. The metabolites involved in these modifications were identified using 2D NMR. Many metabolites were found to be overproduced in confrontation assays with the Streptomyces strain, notably 16 proteinogenic amino acids, inosine, and uridine. This suggested that fungal metabolic pathways such as protein synthesis have been affected due to interaction. Thus, metabolomic studies, as well as proteomics or transcriptomics, are useful for deciphering the mechanisms of interactions between biological control agents and mycotoxigenic fungi. This comprehension is one of the key elements of the improvement of the selection and use of antagonistic agents.

Zobrazit více v PubMed

Commun Agric Appl Biol Sci. 2010;75(4):665-9 PubMed

J Agric Food Chem. 2004 May 19;52(10):2855-60 PubMed

Can J Microbiol. 2000 Aug;46(8):753-8 PubMed

BMC Microbiol. 2016 Nov 9;16(1):272 PubMed

Toxins (Basel). 2015 Feb 04;7(2):439-56 PubMed

Int J Med Microbiol. 2011 Jun;301(5):400-7 PubMed

Med Hypotheses. 2005;64(3):658-60 PubMed

EMBO J. 1993 May;12(5):1907-14 PubMed

J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):299-312 PubMed

Front Microbiol. 2015 Jan 05;5:732 PubMed

J Nat Prod. 2011 Jul 22;74(7):1653-7 PubMed

J Appl Microbiol. 2009 Mar;106(3):977-85 PubMed

Biopolymers. 2010 Sep;93(9):764-76 PubMed

Microbiology. 2007 Aug;153(Pt 8):2774-2780 PubMed

Virulence. 2010 Nov-Dec;1(6):551-4 PubMed

Br Med Bull. 2000;56(1):184-92 PubMed

Eukaryot Cell. 2002 Oct;1(5):719-24 PubMed

Biotechnol Lett. 2005 Feb;27(3):201-5 PubMed

Mol Microbiol. 2003 Mar;47(6):1601-12 PubMed

J Nat Prod. 2013 Nov 22;76(11):2094-9 PubMed

Crit Rev Microbiol. 1984;11(3):209-71 PubMed

Front Microbiol. 2015 Jan 12;5:773 PubMed

Annu Rev Microbiol. 1993;47:57-87 PubMed

Int J Syst Evol Microbiol. 2008 Jan;58(Pt 1):149-59 PubMed

PLoS One. 2013 Nov 29;8(11):e81603 PubMed

J Biotechnol. 2010 Jan 15;145(2):120-9 PubMed

World J Microbiol Biotechnol. 2014 May;30(5):1639-47 PubMed

Appl Environ Microbiol. 2002 May;68(5):2101-5 PubMed

Appl Environ Microbiol. 1994 May;60(5):1626-9 PubMed

J Biol Chem. 1994 Apr 15;269(15):11572-7 PubMed

Appl Environ Microbiol. 1994 Mar;60(3):847-52 PubMed

Molecules. 2016 Mar 18;21(3):370 PubMed

Nature. 2001 Jul 5;412(6842):83-6 PubMed

Front Microbiol. 2015 Jun 08;6:574 PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...