Study of in vitro interaction between Fusarium verticillioides and Streptomyces sp. using metabolomics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
31250362
DOI
10.1007/s12223-019-00725-z
PII: 10.1007/s12223-019-00725-z
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny metabolismus MeSH
- fungální proteiny metabolismus MeSH
- Fusarium chemie metabolismus MeSH
- metabolické sítě a dráhy MeSH
- metabolomika MeSH
- Streptomyces chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- fungální proteiny MeSH
The Streptomyces sp. strain AV05 isolated from an organic amendment was found to impact both growth and fumonisin production of Fusarium verticillioides during in vitro direct confrontation. In order to investigate the interactions between the Streptomyces sp. strain AV05 and F. verticillioides, a metabolomic approach was used. The study of the endometabolomes of the microorganisms was carried out in two different conditions: the microorganisms were cultivated alone or in confrontation. The aim of this study was to examine the modifications of the endometabolome of F. verticillioides in confrontation with the Streptomyces strain. The metabolites involved in these modifications were identified using 2D NMR. Many metabolites were found to be overproduced in confrontation assays with the Streptomyces strain, notably 16 proteinogenic amino acids, inosine, and uridine. This suggested that fungal metabolic pathways such as protein synthesis have been affected due to interaction. Thus, metabolomic studies, as well as proteomics or transcriptomics, are useful for deciphering the mechanisms of interactions between biological control agents and mycotoxigenic fungi. This comprehension is one of the key elements of the improvement of the selection and use of antagonistic agents.
Zobrazit více v PubMed
Commun Agric Appl Biol Sci. 2010;75(4):665-9 PubMed
J Agric Food Chem. 2004 May 19;52(10):2855-60 PubMed
Can J Microbiol. 2000 Aug;46(8):753-8 PubMed
BMC Microbiol. 2016 Nov 9;16(1):272 PubMed
Toxins (Basel). 2015 Feb 04;7(2):439-56 PubMed
Int J Med Microbiol. 2011 Jun;301(5):400-7 PubMed
Med Hypotheses. 2005;64(3):658-60 PubMed
EMBO J. 1993 May;12(5):1907-14 PubMed
J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):299-312 PubMed
Front Microbiol. 2015 Jan 05;5:732 PubMed
J Nat Prod. 2011 Jul 22;74(7):1653-7 PubMed
J Appl Microbiol. 2009 Mar;106(3):977-85 PubMed
Biopolymers. 2010 Sep;93(9):764-76 PubMed
Microbiology. 2007 Aug;153(Pt 8):2774-2780 PubMed
Virulence. 2010 Nov-Dec;1(6):551-4 PubMed
Br Med Bull. 2000;56(1):184-92 PubMed
Eukaryot Cell. 2002 Oct;1(5):719-24 PubMed
Biotechnol Lett. 2005 Feb;27(3):201-5 PubMed
Mol Microbiol. 2003 Mar;47(6):1601-12 PubMed
J Nat Prod. 2013 Nov 22;76(11):2094-9 PubMed
Crit Rev Microbiol. 1984;11(3):209-71 PubMed
Front Microbiol. 2015 Jan 12;5:773 PubMed
Annu Rev Microbiol. 1993;47:57-87 PubMed
Int J Syst Evol Microbiol. 2008 Jan;58(Pt 1):149-59 PubMed
PLoS One. 2013 Nov 29;8(11):e81603 PubMed
J Biotechnol. 2010 Jan 15;145(2):120-9 PubMed
World J Microbiol Biotechnol. 2014 May;30(5):1639-47 PubMed
Appl Environ Microbiol. 2002 May;68(5):2101-5 PubMed
Appl Environ Microbiol. 1994 May;60(5):1626-9 PubMed
J Biol Chem. 1994 Apr 15;269(15):11572-7 PubMed
Appl Environ Microbiol. 1994 Mar;60(3):847-52 PubMed
Molecules. 2016 Mar 18;21(3):370 PubMed
Nature. 2001 Jul 5;412(6842):83-6 PubMed
Front Microbiol. 2015 Jun 08;6:574 PubMed