A novel and potent brain penetrant inhibitor of extracellular vesicle release
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 AG057420
NIA NIH HHS - United States
P30 MH075673
NIMH NIH HHS - United States
R01 AG059799
NIA NIH HHS - United States
R01 MH110246
NIMH NIH HHS - United States
R01 MH107659
NIMH NIH HHS - United States
R25 MH080661
NIMH NIH HHS - United States
P01 MH105280
NIMH NIH HHS - United States
R01 AG023471
NIA NIH HHS - United States
R01 DA040390
NIDA NIH HHS - United States
PubMed
31273753
PubMed Central
PMC6780992
DOI
10.1111/bph.14789
Knihovny.cz E-zdroje
- MeSH
- astrocyty chemie metabolismus MeSH
- extracelulární vezikuly účinky léků metabolismus MeSH
- jaterní mikrozomy chemie metabolismus MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- lidé MeSH
- molekulární struktura MeSH
- mozek účinky léků metabolismus MeSH
- myši MeSH
- potkani Sprague-Dawley MeSH
- rychlé screeningové testy MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND AND PURPOSE: Extracellular vesicles (EVs) are constitutively shed from cells and released by various stimuli. Their protein and RNA cargo are modified by the stimulus, and in disease conditions can carry pathological cargo involved in disease progression. Neutral sphingomyelinase 2 (nSMase2) is a major regulator in at least one of several independent routes of EV biogenesis, and its inhibition is a promising new therapeutic approach for neurological disorders. Unfortunately, known inhibitors exhibit μM potency, poor physicochemical properties, and/or limited brain penetration. Here, we sought to identify a drug-like inhibitor of nSMase2. EXPERIMENTAL APPROACH: We conducted a human nSMase2 high throughput screen (>365,000 compounds). Selected hits were optimized focusing on potency, selectivity, metabolic stability, pharmacokinetics, and ability to inhibit EV release in vitro and in vivo. KEY RESULTS: We identified phenyl(R)-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-b]pyridazin-8-yl)pyrrolidin-3-yl)-carbamate (PDDC), a potent (pIC50 = 6.57) and selective non-competitive inhibitor of nSMase2. PDDC was metabolically stable, with excellent oral bioavailability (%F = 88) and brain penetration (AUCbrain /AUCplasma = 0.60). PDDC dose-dependently (pEC50 = 5.5) inhibited release of astrocyte-derived extracellular vesicles (ADEV). In an in vivo inflammatory brain injury model, PDDC robustly inhibited ADEV release and the associated peripheral immunological response. A closely related inactive PDDC analogue was ineffective. CONCLUSION AND IMPLICATIONS: PDDC is a structurally novel, potent, orally available, and brain penetrant inhibitor of nSMase2. PDDC inhibited release of ADEVs in tissue culture and in vivo. PDDC is actively being tested in animal models of neurological disease and, along with closely related analogues, is being considered for clinical translation.
Chem Research Group Institute of Organic Chemistry and Biochemistry Prague Czech Republic
Department of Medicine Johns Hopkins School of Medicine Baltimore Maryland
Department of Neurology Johns Hopkins School of Medicine Baltimore Maryland
Department of Neuroscience Johns Hopkins School of Medicine Baltimore Maryland
Department of Oncology Johns Hopkins School of Medicine Baltimore Maryland
Department of Psychiatry and Behavioral Sciences Johns Hopkins School of Medicine Baltimore Maryland
Johns Hopkins Drug Discovery Johns Hopkins School of Medicine Baltimore Maryland
Zobrazit více v PubMed
Alexander, S. P. , Fabbro, D. , Kelly, E. , Marrion, N. V. , Peters, J. A. , Faccenda, E. , … CGTP Collaborators (2017). The concise guide to PHARMACOLOGY 2017/18: Enzymes. British Journal of Pharmacology, 174(Suppl 1), S272–S359. 10.1111/bph.13877 PubMed DOI PMC
Asai, H. , Ikezu, S. , Tsunoda, S. , Medalla, M. , Luebke, J. , Haydar, T. , … Ikezu, T. (2015). Depletion of microglia and inhibition of exosome synthesis halt τ propagation. Nature Neuroscience, 18, 1584–1593. 10.1038/nn.4132 PubMed DOI PMC
Barclay, R. A. , Schwab, A. , DeMarino, C. , Akpamagbo, Y. , Lepene, B. , Kassaye, S. , … Kashanchi, F. (2017). Exosomes from uninfected cells activate transcription of latent HIV‐1. The Journal of Biological Chemistry, 292, 11682–11701. 10.1074/jbc.M117.793521 PubMed DOI PMC
Bowes, J. , Brown, A. J. , Hamon, J. , Jarolimek, W. , Sridhar, A. , Waldron, G. , & Whitebread, S. (2012). Reducing safety‐related drug attrition: The use of in vitro pharmacological profiling. Nature Reviews. Drug Discovery, 11, 909–922. 10.1038/nrd3845 PubMed DOI
Chaudhuri, A. D. , Dastgheyb, R. M. , Yoo, S. W. , Trout, A. , Talbot, C. C. Jr. , Hao, H. , … Haughey, N. J. (2018). TNFα and IL‐1β modify the miRNA cargo of astrocyte shed extracellular vesicles to regulate neurotrophic signaling in neurons. Cell Death & Disease, 9, 363 10.1038/s41419-018-0369-4 PubMed DOI PMC
Chen, X. , Hui, L. , Geiger, N. H. , Haughey, N. J. , & Geiger, J. D. (2013). Endolysosome involvement in HIV‐1 transactivator protein‐induced neuronal amyloid β production. Neurobiology of Aging, 34, 2370–2378. 10.1016/j.neurobiolaging.2013.04.015 PubMed DOI PMC
Curtis, M. J. , Alexander, S. , Cirino, G. , Docherty, J. R. , George, C. H. , Giembycz, M. A. , … Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: updated andsimplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175, 987–993. PubMed PMC
Dalvi, P. , Sun, B. , Tang, N. , & Pulliam, L. (2017). Immune activated monocyte exosomes alter microRNAs in brain endothelial cells and initiate an inflammatory response through the TLR4/MyD88 pathway. Scientific Reports, 7, 9954 10.1038/s41598-017-10449-0 PubMed DOI PMC
De Toro, J. , Herschlik, L. , Waldner, C. , & Mongini, C. (2015). Emerging roles of exosomes in normal and pathological conditions: New insights for diagnosis and therapeutic applications. Frontiers in Immunology, 6, 203. PubMed PMC
Dickens, A. M. , Tovar‐y‐Romo, L. B. , Yoo, S. W. , Trout, A. L. , Bae, M. , Kanmogne, M. , … Haughey, N. J. (2017). Astrocyte‐shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Science Signaling, 10(473), pii: eaai7696. PubMed PMC
Dinkins, M. B. , Dasgupta, S. , Wang, G. , Zhu, G. , & Bieberich, E. (2014). Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer's disease. Neurobiology of Aging, 35, 1792–1800. 10.1016/j.neurobiolaging.2014.02.012 PubMed DOI PMC
Dinkins, M. B. , Enasko, J. , Hernandez, C. , Wang, G. , Kong, J. , Helwa, I. , … Bieberich, E. (2016). Neutral sphingomyelinase‐2 deficiency ameliorates Alzheimer's disease pathology and improves cognition in the 5XFAD mouse. The Journal of Neuroscience, 36, 8653–8667. 10.1523/JNEUROSCI.1429-16.2016 PubMed DOI PMC
Figuera‐Losada, M. , Stathis, M. , Dorskind, J. M. , Thomas, A. G. , Bandaru, V. V. , Yoo, S. W. , et al. (2015). Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties. PLoS ONE, 10, e0124481 10.1371/journal.pone.0124481 PubMed DOI PMC
Harding, S. D. , Sharman, J. L. , Faccenda, E. , Southan, C. , Pawson, A. J. , Ireland, S. , … NC‐IUPHAR (2018). The IUPHAR/BPS guide to PHARMACOLOGY in 2018: Updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Research, 46, D1091–D1106. 10.1093/nar/gkx1121 PubMed DOI PMC
Hu, G. , Yao, H. , Chaudhuri, A. D. , Duan, M. , Yelamanchili, S. V. , Wen, H. , … Buch, S. (2012). Exosome‐mediated shuttling of microRNA‐29 regulates HIV Tat and morphine‐mediated neuronal dysfunction. Cell Death & Disease, 3, e381 10.1038/cddis.2012.114 PubMed DOI PMC
Ibrahim, A. , & Marban, E. (2016). Exosomes: Fundamental biology and roles in cardiovascular physiology. Annual Review of Physiology, 78, 67–83. 10.1146/annurev-physiol-021115-104929 PubMed DOI PMC
Kilkenny, C. , Browne, W. , Cuthill, I. C. , Emerson, M. , Altman, D. G. , & Group NCRRGW (2010). Animal research: Reporting in vivo experiments: The ARRIVE guidelines. British Journal of Pharmacology, 160, 1577–1579. 10.1111/j.1476-5381.2010.00872.x PubMed DOI PMC
Kosaka, N. , Iguchi, H. , Hagiwara, K. , Yoshioka, Y. , Takeshita, F. , & Ochiya, T. (2013). Neutral sphingomyelinase 2 (nSMase2)‐dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. The Journal of Biological Chemistry, 288, 10849–10859. 10.1074/jbc.M112.446831 PubMed DOI PMC
Kourembanas, S. (2015). Exosomes: Vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annual Review of Physiology, 77, 13–27. 10.1146/annurev-physiol-021014-071641 PubMed DOI
Li, J. , Yu, W. , Tiwary, R. , Park, S. K. , Xiong, A. , Sanders, B. G. , & Kline, K. (2010). α‐TEA‐induced death receptor dependent apoptosis involves activation of acid sphingomyelinase and elevated ceramide‐enriched cell surface membranes. Cancer Cell International, 10, 40 10.1186/1475-2867-10-40 PubMed DOI PMC
Livak, K. J. , & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real‐time quantitative PCR and the 2(−ΔΔC(T)) method. Methods, 25, 402–408. 10.1006/meth.2001.1262 PubMed DOI
Luberto, C. , Hassler, D. F. , Signorelli, P. , Okamoto, Y. , Sawai, H. , Boros, E. , … Smith, G. K. (2002). Inhibition of tumor necrosis factor‐induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. The Journal of Biological Chemistry, 277, 41128–41139. 10.1074/jbc.M206747200 PubMed DOI
McCluskey, L. , Campbell, S. , Anthony, D. , & Allan, S. M. (2008). Inflammatory responses in the rat brain in response to different methods of intra‐cerebral administration. Journal of Neuroimmunology, 194, 27–33. 10.1016/j.jneuroim.2007.11.009 PubMed DOI
Paxinos, G. , & Franklin, K. B. J. (2001). The mouse brain in stereotaxic coordinates (Second ed.). Academic Press.
Rais, R. , Jancarik, A. , Tenora, L. , Nedelcovych, M. , Alt, J. , Englert, J. , … Slusher, B. S. (2016). Discovery of 6‐diazo‐5‐oxo‐l‐norleucine (DON) prodrugs with enhanced CSF delivery in monkeys: A potential treatment for glioblastoma. Journal of Medicinal Chemistry, 59, 8621–8633. 10.1021/acs.jmedchem.6b01069 PubMed DOI
Raposo, G. , & Stoorvogel, W. (2013). Extracellular vesicles: Exosomes, microvesicles, and friends. The Journal of Cell Biology, 200, 373–383. 10.1083/jcb.201211138 PubMed DOI PMC
Sardar Sinha, M. , Ansell‐Schultz, A. , Civitelli, L. , Hildesjo, C. , Larsson, M. , Lannfelt, L. , … Hallbeck, M. (2018). Alzheimer's disease pathology propagation by exosomes containing toxic amyloid‐β oligomers. Acta Neuropathologica, 136, 41–56. 10.1007/s00401-018-1868-1 PubMed DOI PMC
Smith, D. H. , Chen, X. H. , Pierce, J. E. , Wolf, J. A. , Trojanowski, J. Q. , Graham, D. I. , & McIntosh, T. K. (1997). Progressive atrophy and neuron death for one year following brain trauma in the rat. Journal of Neurotrauma, 14, 715–727. 10.1089/neu.1997.14.715 PubMed DOI
Sun, B. , Dalvi, P. , Abadjian, L. , Tang, N. , & Pulliam, L. (2017). Blood neuron‐derived exosomes as biomarkers of cognitive impairment in HIV. Aids, 31, F9–F17. 10.1097/QAD.0000000000001595 PubMed DOI PMC
Thery, C. (2011). Exosomes: Secreted vesicles and intercellular communications. F1000 Biology Reports, 3, 15. PubMed PMC
Thery, C. , Zitvogel, L. , & Amigorena, S. (2002). Exosomes: Composition, biogenesis and function. Nature Reviews. Immunology, 2, 569–579. 10.1038/nri855 PubMed DOI
Trajkovic, K. , Hsu, C. , Chiantia, S. , Rajendran, L. , Wenzel, D. , Wieland, F. , … Simons, M. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 319, 1244–1247. 10.1126/science.1153124 PubMed DOI
Waters, N. J. , Jones, R. , Williams, G. , & Sohal, B. (2008). Validation of a rapid equilibrium dialysis approach for the measurement of plasma protein binding. Journal of Pharmaceutical Sciences, 97, 4586–4595. 10.1002/jps.21317 PubMed DOI
Weidle, U. H. , Birzele, F. , Kollmorgen, G. , & Ruger, R. (2017). The multiple roles of exosomes in metastasis. Cancer Genomics Proteomics, 14(1), 15. PubMed PMC
Westberry, J. M. , Trout, A. L. , & Wilson, M. E. (2010). Epigenetic regulation of estrogen receptor α gene expression in the mouse cortex during early postnatal development. Endocrinology, 151, 731–740. 10.1210/en.2009-0955 PubMed DOI PMC
Wilcockson, D. C. , Campbell, S. J. , Anthony, D. C. , & Perry, V. H. (2002). The systemic and local acute phase response following acute brain injury. Journal of Cerebral Blood Flow and Metabolism, 22, 318–326. 10.1097/00004647-200203000-00009 PubMed DOI
Zhang, Q. G. , Wang, R. , Tang, H. , Dong, Y. , Chan, A. , Sareddy, G. R. , … Brann, D. W. (2014). Brain‐derived estrogen exerts anti‐inflammatory and neuroprotective actions in the rat hippocampus. Molecular and Cellular Endocrinology, 389, 84–91. 10.1016/j.mce.2013.12.019 PubMed DOI PMC
Neutral sphingomyelinase 2 inhibitors based on the pyrazolo[1,5-a]pyrimidin-3-amine scaffold
Novel Human Neutral Sphingomyelinase 2 Inhibitors as Potential Therapeutics for Alzheimer's Disease