Novel Human Neutral Sphingomyelinase 2 Inhibitors as Potential Therapeutics for Alzheimer's Disease

. 2020 Jun 11 ; 63 (11) : 6028-6056. [epub] 20200527

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32298582

Grantová podpora
P30 MH075673 NIMH NIH HHS - United States
R01 AG059799 NIA NIH HHS - United States
R01 AG063831 NIA NIH HHS - United States
R25 MH080661 NIMH NIH HHS - United States

Neutral sphingomyelinase 2 (nSMase2) catalyzes the cleavage of sphingomyelin to phosphorylcholine and ceramide, an essential step in the formation and release of exosomes from cells that is critical for intracellular communication. Chronic increase of brain nSMase2 activity and related exosome release have been implicated in various pathological processes, including the progression of Alzheimer's disease (AD), making nSMase2 a viable therapeutic target. Recently, we identified phenyl (R)-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-b]pyridazin-8-yl)pyrrolidin-3-yl)carbamate 1 (PDDC), the first nSMase2 inhibitor that possesses both favorable pharmacodynamics and pharmacokinetic (PK) parameters, including substantial oral bioavailability, brain penetration, and significant inhibition of exosome release from the brain in vivo. Herein we demonstrate the efficacy of 1 (PDDC) in a mouse model of AD and detail extensive structure-activity relationship (SAR) studies with 70 analogues, unveiling several that exert similar or higher activity against nSMase2 with favorable pharmacokinetic properties.

Zobrazit více v PubMed

Sardar Sinha M; Ansell-Schultz A; Civitelli L; Hildesjo C; Larsson M; Lannfelt L; Ingelsson M; Hallbeck M Alzheimer’s disease pathology propagation by exosomes containing toxic amyloidbeta oligomers. Acta Neuropathol. 2018, 136, 41–56. PubMed PMC

Thery C Exosomes: secreted vesicles and intercellular communications. F1000 Biol. Rep 2011, 3, 15. PubMed PMC

Weidle UH; Birzele F; Kollmorgen G; Ruger R The Multiple Roles of Exosomes in Metastasis. Cancer Genomics Proteomics 2017, 14, 1–15. PubMed PMC

Trajkovic K; Hsu C; Chiantia S; Rajendran L; Wenzel D; Wieland F; Schwille P; Brugger B; Simons M Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008, 319, 1244–1247. PubMed

Shamseddine AA; Airola MV; Hannun YA Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv. Biol. Regul 2015, 57, 24–41. PubMed PMC

Asai H; Ikezu S; Tsunoda S; Medalla M; Luebke J; Haydar T; Wolozin B; Butovsky O; Kugler S; Ikezu T Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci 2015, 18, 1584–1593. PubMed PMC

Dinkins MB; Dasgupta S; Wang G; Zhu G; Bieberich E Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Aging 2014, 35, 1792–1800. PubMed PMC

Dinkins MB; Enasko J; Hernandez C; Wang G; Kong J; Helwa I; Liu Y; Terry AV; Bieberich E Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer’s Disease Pathology and Improves Cognition in the 5XFAD Mouse. J. Neurosci 2016, 36, 8653–8667. PubMed PMC

Saman S; Kim W; Raya M; Visnick Y; Miro S; Saman S; Jackson B; McKee AC; Alvarez VE; Lee NC; Hall GF Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem 2012, 287, 3842–3849. PubMed PMC

Haughey NJ; Cutler RG; Tamara A; McArthur JC; Vargas DL; Pardo CA; Turchan J; Nath A; Mattson MP Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Ann. Neurol 2004, 55, 257–267. PubMed

Jana A; Pahan K Human immunodeficiency virus type 1 gp120 induces apoptosis in human primary neurons through redox-regulated activation of neutral sphingomyelinase. J. Neurosci 2004, 24, 9531–9540. PubMed PMC

Barclay RA; Schwab A; DeMarino C; Akpamagbo Y; Lepene B; Kassaye S; Iordanskiy S; Kashanchi F Exosomes from uninfected cells activate transcription of latent HIV-1. J. Biol. Chem 2017, 292, 11682–11701. PubMed PMC

Hu G; Yao H; Chaudhuri AD; Duan M; Yelamanchili SV; Wen H; Cheney PD; Fox HS; Buch S Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated neuronal dysfunction. Cell Death Dis. 2012, 3, No. e381. PubMed PMC

Sun B; Dalvi P; Abadjian L; Tang N; Pulliam L Blood neuron-derived exosomes as biomarkers of cognitive impairment in HIV. AIDS 2017, 31, F9–F17. PubMed PMC

Cutler RG; Pedersen WA; Camandola S; Rothstein JD; Mattson MP Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann. Neurol 2002, 52, 448–457. PubMed

Kosaka N; Iguchi H; Hagiwara K; Yoshioka Y; Takeshita F; Ochiya T Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J. Biol. Chem 2013, 288, 10849–10859. PubMed PMC

Tominaga N; Kosaka N; Ono M; Katsuda T; Yoshioka Y; Tamura K; Lotvall J; Nakagama H; Ochiya T Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat. Commun 2015, 6, 6716. PubMed PMC

Dickens AM; Tovar YRLB; Yoo SW; Trout AL; Bae M; Kanmogne M; Megra B; Williams DW; Witwer KW; Gacias M; Tabatadze N; Cole RN; Casaccia P; Berman JW; Anthony DC; Haughey NJ Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci. Signal 2017, 10, No. eaai7696. PubMed PMC

Figuera-Losada M; Stathis M; Dorskind JM; Thomas AG; Bandaru VV; Yoo SW; Westwood NJ; Rogers GW; McArthur JC; Haughey NJ; Slusher BS; Rojas C Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties. PLoS One 2015, 10, No. e0124481. PubMed PMC

Luberto C; Hassler DF; Signorelli P; Okamoto Y; Sawai H; Boros E; Hazen-Martin DJ; Obeid LM; Hannun YA; Smith GK Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J. Biol. Chem 2002, 277, 41128–41139. PubMed

Rojas C; Sala M; Thomas AG; Chaudhuri AD; Yoo SW; Li ZG; Dash RP; Rais R; Haughey NJ; Nencka R; Slusher B A novel and potent brain penetrant inhibitor of extracellular vesicle release. Br. J. Pharmacol 2019, 176, 3857–3870. PubMed PMC

Mejdrová I; Chalupská D; Kögler M; Šála M; Plačková P; Baumlová A; Hřebabecký H; Prochazáová E; Dejmek M; Guillon R; Strunin D; Weber J; Lee G; Birkus G; Mertlíková-Kaiserová H; Boura E; Nencka R Highly Selective Phosphatidylinositol 4-Kinase III beta Inhibitors and Structural Insight into Their Mode of Action. J. Med. Chem 2015, 58, 3767–3793. PubMed

Mejdrova I; Chalupska D; Plackova P; Mueller C; Sala M; Klima M; Baumlova A; Hrebabecky H; Prochazkova E; Dejmek M; Strunin D; Weber J; Lee G; Matousova M; Mertlikova-Kaiserova H; Ziebuhr J; Birkus G; Boura E; Nencka R Rational Design of Novel Highly Potent and Selective Phosphatidylinositol 4-Kinase III beta (PI4KB) Inhibitors as Broad-Spectrum Antiviral Agents and Tools for Chemical Biology. J. Med. Chem 2017, 60, 100–118. PubMed

Humpolickova J; Mejdrova I; Matousova M; Nencka R; Boura E Fluorescent Inhibitors as Tools To Characterize Enzymes: Case Study of the Lipid Kinase Phosphatidylinositol 4-Kinase III beta (PI4KB). J. Med. Chem 2017, 60, 119–127. PubMed

Dejmek M; Kovackova S; Zbornikova E; Hrebabecky H; Sala M; Dracinsky M; Nencka R One-pot build-up procedure for the synthesis of variously substituted purine derivatives. RSC Adv. 2012, 2, 6970–6980.

Figuera-Losada M; Stathis M; Dorskind JM; Thomas AG; Bandaru VVR; Yoo SW; Westwood NJ; Rogers GW; McArthur JC; Haughey NJ; Slusher BS; Rojas C Cambinol, a Novel Inhibitor of Neutral Sphingomyelinase 2 Shows Neuroprotective Properties. PLoS One 2015, 10, No. e0124481. PubMed PMC

Tenora L; Alt J; Dash RP; Gadiano AJ; Novotná K; Veeravalli V; Lam J; Kirkpatrick QR; Lemberg KM; Majer P; Rais R; Slusher BS Tumor-Targeted Delivery of 6-Diazo-5-oxo-lnorleucine (DON) Using Substituted Acetylated Lysine Prodrugs. J. Med. Chem 2019, 62, 3524–3538. PubMed PMC

Luberto C; Hassler DF; Signorelli P; Okamoto Y; Sawai H; Boros E; Hazen-Martin DJ; Obeid LM; Hannun YA; Smith GK Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J. Biol. Chem 2002, 277, 41128–41139. PubMed

Xiao T; Zhang W; Jiao B; Pan CZ; Liu X; Shen L The role of exosomes in the pathogenesis of Alzheimer’ disease. Transl. Neurodegener 2017, 6, 3. PubMed

Ohno M; Chang L; Tseng W; Oakley H; Citron M; Klein WL; Vassar R; Disterhoft JF Temporal memory deficits in Alzheimer’s mouse models: rescue by genetic deletion of BACE1. Eur. J. Neurosci 2006, 23, 251–260. PubMed

Yang EJ; Mahmood U; Kim H; Choi M; Choi Y; Lee JP; Chang MJ; Kim HS Alterations in protein phosphorylation in the amygdala of the 5XFamilial Alzheimer’s disease animal model. J. Pharmacol. Sci 2017, 133, 261–267. PubMed

Sergi G; De Rui M; Coin A; Inelmen EM; Manzato E Weight loss and Alzheimer’s disease: temporal and aetiologic connections. Proc. Nutr. Soc 2013, 72, 160–165. PubMed

Jawhar S; Trawicka A; Jenneckens C; Bayer TA; Wirths O Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Aging 2012, 33, 196. PubMed

Rojas S; Herance JR; Gispert JD; Abad S; Torrent E; Jimenez X; Pareto D; Perpina U; Sarroca S; Rodriguez E; OrtegaAznar A; Sanfeliu C In vivo evaluation of amyloid deposition and brain glucose metabolism of 5XFAD mice using positron emission tomography. Neurobiol. Aging 2013, 34, 1790–1798. PubMed

Rojas C; Barnaeva E; Thomas AG; Hu X; Southall N; Marugan J; Chaudhuri AD; Yoo S-W; Hin N; Stepanek O; Wu Y; Zimmermann SC; Gadiano AG; Tsukamoto T; Rais R; Haughey N; Ferrer M; Slusher BS DPTIP, a newly identified potent brain penetrant neutral sphingomyelinase 2 inhibitor, regulates astrocyte-peripheral immune communication following brain inflammation. Sci. Rep 2018, 8, 17715. PubMed PMC

Šála M; Kögler M; Plačková P; Mejdrová I; Hřebabecký H; Procházková E; Strunin D; Lee G; Birkus G; Weber J; Mertlíková-Kaiserová H; Nencka R Purine analogs as phosphatidylinositol 4-kinase IIIβ inhibitors. Bioorg. Med. Chem. Lett 2016, 26, 2706–2712. PubMed PMC

Meana Á; Rodríguez JF; Sanz-Tejedor MA; García-Ruano JL Efficient Regioselective Preparationof Monobromo and Bromoiodo Hydroxy Pyridines from Dibromoderivativesvia BromineLithium Exchange. Synlett 2003, 2003, 1678–1682.

Zou M-F; Cao J; Abramyan AM; Kopajtic T; Zanettini C; Guthrie DA; Rais R; Slusher BS; Shi L; Loland CJ; Newman AH Structure–Activity Relationship Studies on a Series of 3α-[Bis(4fluorophenyl)methoxy]tropanes and 3α-[Bis(4-fluorophenyl)-methylamino]tropanes As Novel Atypical Dopamine Transporter (DAT) Inhibitors for the Treatment of Cocaine Use Disorders. J. Med. Chem 2017, 60, 10172–10187. PubMed PMC

You Z-B; Bi G-H; Galaj E; Kumar V; Cao J; Gadiano A; Rais R; Slusher BS; Gardner EL; Xi Z-X; Newman AH Dopamine D3R antagonist VK4–116 attenuates oxycodone self-administration and reinstatement without compromising its antinociceptive effects. Neuropsychopharmacology 2019, 8, 1415–1424. PubMed PMC

Rahn KA; Watkins CC; Alt J; Rais R; Stathis M; Grishkan I; Crainiceau CM; Pomper MG; Rojas C; Pletnikov MV; Calabresi PA; Brandt J; Barker PB; Slusher BS; Kaplin AI Inhibition of glutamate carboxypeptidase II (GCPII) activity as a treatment for cognitive impairment in multiple sclerosis. Proc. Natl. Acad. Sci. U. S. A 2012, 109, 20101–20106. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace