Novel Human Neutral Sphingomyelinase 2 Inhibitors as Potential Therapeutics for Alzheimer's Disease
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P30 MH075673
NIMH NIH HHS - United States
R01 AG059799
NIA NIH HHS - United States
R01 AG063831
NIA NIH HHS - United States
R25 MH080661
NIMH NIH HHS - United States
PubMed
32298582
PubMed Central
PMC8025741
DOI
10.1021/acs.jmedchem.0c00278
Knihovny.cz E-zdroje
- MeSH
- Alzheimerova nemoc farmakoterapie patologie MeSH
- exozómy metabolismus MeSH
- inhibitory enzymů chemie metabolismus farmakologie terapeutické užití MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- mozek metabolismus MeSH
- myši transgenní MeSH
- myši MeSH
- pyridaziny chemie metabolismus terapeutické užití MeSH
- sfingomyelinfosfodiesterasa antagonisté a inhibitory metabolismus farmakologie MeSH
- tělesná hmotnost účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inhibitory enzymů MeSH
- pyridaziny MeSH
- sfingomyelinfosfodiesterasa MeSH
- SMPD3 protein, human MeSH Prohlížeč
Neutral sphingomyelinase 2 (nSMase2) catalyzes the cleavage of sphingomyelin to phosphorylcholine and ceramide, an essential step in the formation and release of exosomes from cells that is critical for intracellular communication. Chronic increase of brain nSMase2 activity and related exosome release have been implicated in various pathological processes, including the progression of Alzheimer's disease (AD), making nSMase2 a viable therapeutic target. Recently, we identified phenyl (R)-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-b]pyridazin-8-yl)pyrrolidin-3-yl)carbamate 1 (PDDC), the first nSMase2 inhibitor that possesses both favorable pharmacodynamics and pharmacokinetic (PK) parameters, including substantial oral bioavailability, brain penetration, and significant inhibition of exosome release from the brain in vivo. Herein we demonstrate the efficacy of 1 (PDDC) in a mouse model of AD and detail extensive structure-activity relationship (SAR) studies with 70 analogues, unveiling several that exert similar or higher activity against nSMase2 with favorable pharmacokinetic properties.
Zobrazit více v PubMed
Sardar Sinha M; Ansell-Schultz A; Civitelli L; Hildesjo C; Larsson M; Lannfelt L; Ingelsson M; Hallbeck M Alzheimer’s disease pathology propagation by exosomes containing toxic amyloidbeta oligomers. Acta Neuropathol. 2018, 136, 41–56. PubMed PMC
Thery C Exosomes: secreted vesicles and intercellular communications. F1000 Biol. Rep 2011, 3, 15. PubMed PMC
Weidle UH; Birzele F; Kollmorgen G; Ruger R The Multiple Roles of Exosomes in Metastasis. Cancer Genomics Proteomics 2017, 14, 1–15. PubMed PMC
Trajkovic K; Hsu C; Chiantia S; Rajendran L; Wenzel D; Wieland F; Schwille P; Brugger B; Simons M Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008, 319, 1244–1247. PubMed
Shamseddine AA; Airola MV; Hannun YA Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv. Biol. Regul 2015, 57, 24–41. PubMed PMC
Asai H; Ikezu S; Tsunoda S; Medalla M; Luebke J; Haydar T; Wolozin B; Butovsky O; Kugler S; Ikezu T Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci 2015, 18, 1584–1593. PubMed PMC
Dinkins MB; Dasgupta S; Wang G; Zhu G; Bieberich E Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Aging 2014, 35, 1792–1800. PubMed PMC
Dinkins MB; Enasko J; Hernandez C; Wang G; Kong J; Helwa I; Liu Y; Terry AV; Bieberich E Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer’s Disease Pathology and Improves Cognition in the 5XFAD Mouse. J. Neurosci 2016, 36, 8653–8667. PubMed PMC
Saman S; Kim W; Raya M; Visnick Y; Miro S; Saman S; Jackson B; McKee AC; Alvarez VE; Lee NC; Hall GF Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem 2012, 287, 3842–3849. PubMed PMC
Haughey NJ; Cutler RG; Tamara A; McArthur JC; Vargas DL; Pardo CA; Turchan J; Nath A; Mattson MP Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Ann. Neurol 2004, 55, 257–267. PubMed
Jana A; Pahan K Human immunodeficiency virus type 1 gp120 induces apoptosis in human primary neurons through redox-regulated activation of neutral sphingomyelinase. J. Neurosci 2004, 24, 9531–9540. PubMed PMC
Barclay RA; Schwab A; DeMarino C; Akpamagbo Y; Lepene B; Kassaye S; Iordanskiy S; Kashanchi F Exosomes from uninfected cells activate transcription of latent HIV-1. J. Biol. Chem 2017, 292, 11682–11701. PubMed PMC
Hu G; Yao H; Chaudhuri AD; Duan M; Yelamanchili SV; Wen H; Cheney PD; Fox HS; Buch S Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated neuronal dysfunction. Cell Death Dis. 2012, 3, No. e381. PubMed PMC
Sun B; Dalvi P; Abadjian L; Tang N; Pulliam L Blood neuron-derived exosomes as biomarkers of cognitive impairment in HIV. AIDS 2017, 31, F9–F17. PubMed PMC
Cutler RG; Pedersen WA; Camandola S; Rothstein JD; Mattson MP Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann. Neurol 2002, 52, 448–457. PubMed
Kosaka N; Iguchi H; Hagiwara K; Yoshioka Y; Takeshita F; Ochiya T Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J. Biol. Chem 2013, 288, 10849–10859. PubMed PMC
Tominaga N; Kosaka N; Ono M; Katsuda T; Yoshioka Y; Tamura K; Lotvall J; Nakagama H; Ochiya T Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat. Commun 2015, 6, 6716. PubMed PMC
Dickens AM; Tovar YRLB; Yoo SW; Trout AL; Bae M; Kanmogne M; Megra B; Williams DW; Witwer KW; Gacias M; Tabatadze N; Cole RN; Casaccia P; Berman JW; Anthony DC; Haughey NJ Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci. Signal 2017, 10, No. eaai7696. PubMed PMC
Figuera-Losada M; Stathis M; Dorskind JM; Thomas AG; Bandaru VV; Yoo SW; Westwood NJ; Rogers GW; McArthur JC; Haughey NJ; Slusher BS; Rojas C Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties. PLoS One 2015, 10, No. e0124481. PubMed PMC
Luberto C; Hassler DF; Signorelli P; Okamoto Y; Sawai H; Boros E; Hazen-Martin DJ; Obeid LM; Hannun YA; Smith GK Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J. Biol. Chem 2002, 277, 41128–41139. PubMed
Rojas C; Sala M; Thomas AG; Chaudhuri AD; Yoo SW; Li ZG; Dash RP; Rais R; Haughey NJ; Nencka R; Slusher B A novel and potent brain penetrant inhibitor of extracellular vesicle release. Br. J. Pharmacol 2019, 176, 3857–3870. PubMed PMC
Mejdrová I; Chalupská D; Kögler M; Šála M; Plačková P; Baumlová A; Hřebabecký H; Prochazáová E; Dejmek M; Guillon R; Strunin D; Weber J; Lee G; Birkus G; Mertlíková-Kaiserová H; Boura E; Nencka R Highly Selective Phosphatidylinositol 4-Kinase III beta Inhibitors and Structural Insight into Their Mode of Action. J. Med. Chem 2015, 58, 3767–3793. PubMed
Mejdrova I; Chalupska D; Plackova P; Mueller C; Sala M; Klima M; Baumlova A; Hrebabecky H; Prochazkova E; Dejmek M; Strunin D; Weber J; Lee G; Matousova M; Mertlikova-Kaiserova H; Ziebuhr J; Birkus G; Boura E; Nencka R Rational Design of Novel Highly Potent and Selective Phosphatidylinositol 4-Kinase III beta (PI4KB) Inhibitors as Broad-Spectrum Antiviral Agents and Tools for Chemical Biology. J. Med. Chem 2017, 60, 100–118. PubMed
Humpolickova J; Mejdrova I; Matousova M; Nencka R; Boura E Fluorescent Inhibitors as Tools To Characterize Enzymes: Case Study of the Lipid Kinase Phosphatidylinositol 4-Kinase III beta (PI4KB). J. Med. Chem 2017, 60, 119–127. PubMed
Dejmek M; Kovackova S; Zbornikova E; Hrebabecky H; Sala M; Dracinsky M; Nencka R One-pot build-up procedure for the synthesis of variously substituted purine derivatives. RSC Adv. 2012, 2, 6970–6980.
Figuera-Losada M; Stathis M; Dorskind JM; Thomas AG; Bandaru VVR; Yoo SW; Westwood NJ; Rogers GW; McArthur JC; Haughey NJ; Slusher BS; Rojas C Cambinol, a Novel Inhibitor of Neutral Sphingomyelinase 2 Shows Neuroprotective Properties. PLoS One 2015, 10, No. e0124481. PubMed PMC
Tenora L; Alt J; Dash RP; Gadiano AJ; Novotná K; Veeravalli V; Lam J; Kirkpatrick QR; Lemberg KM; Majer P; Rais R; Slusher BS Tumor-Targeted Delivery of 6-Diazo-5-oxo-lnorleucine (DON) Using Substituted Acetylated Lysine Prodrugs. J. Med. Chem 2019, 62, 3524–3538. PubMed PMC
Luberto C; Hassler DF; Signorelli P; Okamoto Y; Sawai H; Boros E; Hazen-Martin DJ; Obeid LM; Hannun YA; Smith GK Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J. Biol. Chem 2002, 277, 41128–41139. PubMed
Xiao T; Zhang W; Jiao B; Pan CZ; Liu X; Shen L The role of exosomes in the pathogenesis of Alzheimer’ disease. Transl. Neurodegener 2017, 6, 3. PubMed
Ohno M; Chang L; Tseng W; Oakley H; Citron M; Klein WL; Vassar R; Disterhoft JF Temporal memory deficits in Alzheimer’s mouse models: rescue by genetic deletion of BACE1. Eur. J. Neurosci 2006, 23, 251–260. PubMed
Yang EJ; Mahmood U; Kim H; Choi M; Choi Y; Lee JP; Chang MJ; Kim HS Alterations in protein phosphorylation in the amygdala of the 5XFamilial Alzheimer’s disease animal model. J. Pharmacol. Sci 2017, 133, 261–267. PubMed
Sergi G; De Rui M; Coin A; Inelmen EM; Manzato E Weight loss and Alzheimer’s disease: temporal and aetiologic connections. Proc. Nutr. Soc 2013, 72, 160–165. PubMed
Jawhar S; Trawicka A; Jenneckens C; Bayer TA; Wirths O Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Aging 2012, 33, 196. PubMed
Rojas S; Herance JR; Gispert JD; Abad S; Torrent E; Jimenez X; Pareto D; Perpina U; Sarroca S; Rodriguez E; OrtegaAznar A; Sanfeliu C In vivo evaluation of amyloid deposition and brain glucose metabolism of 5XFAD mice using positron emission tomography. Neurobiol. Aging 2013, 34, 1790–1798. PubMed
Rojas C; Barnaeva E; Thomas AG; Hu X; Southall N; Marugan J; Chaudhuri AD; Yoo S-W; Hin N; Stepanek O; Wu Y; Zimmermann SC; Gadiano AG; Tsukamoto T; Rais R; Haughey N; Ferrer M; Slusher BS DPTIP, a newly identified potent brain penetrant neutral sphingomyelinase 2 inhibitor, regulates astrocyte-peripheral immune communication following brain inflammation. Sci. Rep 2018, 8, 17715. PubMed PMC
Šála M; Kögler M; Plačková P; Mejdrová I; Hřebabecký H; Procházková E; Strunin D; Lee G; Birkus G; Weber J; Mertlíková-Kaiserová H; Nencka R Purine analogs as phosphatidylinositol 4-kinase IIIβ inhibitors. Bioorg. Med. Chem. Lett 2016, 26, 2706–2712. PubMed PMC
Meana Á; Rodríguez JF; Sanz-Tejedor MA; García-Ruano JL Efficient Regioselective Preparationof Monobromo and Bromoiodo Hydroxy Pyridines from Dibromoderivativesvia BromineLithium Exchange. Synlett 2003, 2003, 1678–1682.
Zou M-F; Cao J; Abramyan AM; Kopajtic T; Zanettini C; Guthrie DA; Rais R; Slusher BS; Shi L; Loland CJ; Newman AH Structure–Activity Relationship Studies on a Series of 3α-[Bis(4fluorophenyl)methoxy]tropanes and 3α-[Bis(4-fluorophenyl)-methylamino]tropanes As Novel Atypical Dopamine Transporter (DAT) Inhibitors for the Treatment of Cocaine Use Disorders. J. Med. Chem 2017, 60, 10172–10187. PubMed PMC
You Z-B; Bi G-H; Galaj E; Kumar V; Cao J; Gadiano A; Rais R; Slusher BS; Gardner EL; Xi Z-X; Newman AH Dopamine D3R antagonist VK4–116 attenuates oxycodone self-administration and reinstatement without compromising its antinociceptive effects. Neuropsychopharmacology 2019, 8, 1415–1424. PubMed PMC
Rahn KA; Watkins CC; Alt J; Rais R; Stathis M; Grishkan I; Crainiceau CM; Pomper MG; Rojas C; Pletnikov MV; Calabresi PA; Brandt J; Barker PB; Slusher BS; Kaplin AI Inhibition of glutamate carboxypeptidase II (GCPII) activity as a treatment for cognitive impairment in multiple sclerosis. Proc. Natl. Acad. Sci. U. S. A 2012, 109, 20101–20106. PubMed PMC
Neutral sphingomyelinase 2 inhibitors based on the pyrazolo[1,5-a]pyrimidin-3-amine scaffold