Inhibition of FLT3-ITD Kinase in Acute Myeloid Leukemia by New Imidazo[1,2-b]pyridazine Derivatives Identified by Scaffold Hopping
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37535845
PubMed Central
PMC10461230
DOI
10.1021/acs.jmedchem.3c00575
Knihovny.cz E-zdroje
- MeSH
- akutní myeloidní leukemie * patologie MeSH
- antitumorózní látky * farmakologie terapeutické užití MeSH
- apoptóza MeSH
- inhibitory proteinkinas farmakologie terapeutické užití MeSH
- lidé MeSH
- mutace MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- pyridaziny * farmakologie terapeutické užití MeSH
- pyrimidiny farmakologie MeSH
- tyrosinkinasa 3 podobná fms genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antitumorózní látky * MeSH
- FLT3 protein, human MeSH Prohlížeč
- inhibitory proteinkinas MeSH
- pyridazine MeSH Prohlížeč
- pyridaziny * MeSH
- pyrimidiny MeSH
- tyrosinkinasa 3 podobná fms MeSH
FLT3 kinase is a potential drug target in acute myeloid leukemia (AML). Patients with FLT3 mutations typically have higher relapse rates and worse outcomes than patients without FLT3 mutations. In this study, we investigated the suitability of various heterocycles as central cores of FLT3 inhibitors, including thieno[3,2-d]pyrimidine, pyrazolo[1,5-a]pyrimidine, imidazo[4,5-b]pyridine, pyrido[4,3-d]pyrimidine, and imidazo[1,2-b]pyridazine. Our assays revealed a series of imidazo[1,2-b]pyridazines with high potency against FLT3. Compound 34f showed nanomolar inhibitory activity against recombinant FLT3-ITD and FLT3-D835Y (IC50 values 4 and 1 nM, respectively) as well as in the FLT3-ITD-positive AML cell lines MV4-11, MOLM-13, and MOLM-13 expressing the FLT3-ITD-D835Y mutant (GI50 values of 7, 9, and 4 nM, respectively). In contrast, FLT3-independent cell lines were much less sensitive. In vitro experiments confirmed suppression of FLT3 downstream signaling pathways. Finally, the treatment of MV4-11 xenograft-bearing mice with 34f at doses of 5 and 10 mg/kg markedly blocked tumor growth without any adverse effects.
Zobrazit více v PubMed
Döhner H.; Weisdorf D. J.; Bloomfield C. D. Acute Myeloid Leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. 10.1056/NEJMra1406184. PubMed DOI
Short N. J.; Rytting M. E.; Cortes J. E. Acute Myeloid Leukaemia. Lancet 2018, 392, 593–606. 10.1016/S0140-6736(18)31041-9. PubMed DOI PMC
Prada-Arismendy J.; Arroyave J. C.; Röthlisberger S. Molecular Biomarkers in Acute Myeloid Leukemia. Blood Rev. 2017, 31, 63–76. 10.1016/j.blre.2016.08.005. PubMed DOI
Kazi J. U.; Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol. Rev. 2019, 99, 1433–1466. 10.1152/physrev.00029.2018. PubMed DOI
Gilliland D. G.; Griffin J. D. The Roles of FLT3 in Hematopoiesis and Leukemia. Blood 2002, 100, 1532–1542. 10.1182/blood-2002-02-0492. PubMed DOI
Daver N.; Schlenk R. F.; Russell N. H.; Levis M. J. Targeting FLT3 Mutations in AML: Review of Current Knowledge and Evidence. Leukemia 2019, 33, 299–312. 10.1038/s41375-018-0357-9. PubMed DOI PMC
Stirewalt D. L.; Kopecky K. J.; Meshinchi S.; Engel J. H.; Pogosova-Agadjanyan E. L.; Linsley J.; Slovak M. L.; Willman C. L.; Radich J. P. Size of FLT3 Internal Tandem Duplication Has Prognostic Significance in Patients with Acute Myeloid Leukemia. Blood 2006, 107, 3724–3726. 10.1182/blood-2005-08-3453. PubMed DOI PMC
Sutamtewagul G.; Vigil C. E. Clinical Use of FLT3 Inhibitors in Acute Myeloid Leukemia. OncoTargets Ther. 2018, Volume 11, 7041–7052. 10.2147/OTT.S171640. PubMed DOI PMC
Thomas C. M.; Campbell P. FLT3 Inhibitors in Acute Myeloid Leukemia: Current and Future. J. Oncol. Pharm. Pract. 2019, 25, 163–171. 10.1177/1078155218802620. PubMed DOI
Zhong Y.; Qiu R. Z.; Sun S. L.; Zhao C.; Fan T. Y.; Chen M.; Li N. G.; Shi Z. H. Small-Molecule Fms-like Tyrosine Kinase 3 Inhibitors: An Attractive and Efficient Method for the Treatment of Acute Myeloid Leukemia. J. Med. Chem. 2020, 63, 12403–12428. 10.1021/acs.jmedchem.0c00696. PubMed DOI
Köprülüoğlu C.; Dejmek M.; Šála M.; Ajani H.; Hřebabecký H.; Fanfrlík J.; Jorda R.; Dračínský M.; Procházková E.; Šácha P.; et al. Optimization of Norbornyl-Based Carbocyclic Nucleoside Analogs as Cyclin-Dependent Kinase 2 Inhibitors. J. Mol. Recognit. 2020, 33, e284210.1002/jmr.2842. PubMed DOI
Gucký T.; Řezníčková E.; Radošová Muchová T.; Jorda R.; Klejová Z.; Malínková V.; Berka K.; Bazgier V.; Ajani H.; Lepšík M.; et al. Discovery of N 2 -(4-Amino-Cyclohexyl)-9-Cyclopentyl- N 6 -(4-Morpholin-4-ylmethyl-Phenyl)- 9H-Purine-2,6-Diamine as a Potent FLT3 Kinase Inhibitor for Acute Myeloid Leukemia with FLT3 Mutations. J. Med. Chem. 2018, 61, 3855–3869. 10.1021/acs.jmedchem.7b01529. PubMed DOI
Chang Y.-T.; Gray N. S.; Rosania G. R.; Sutherlin D. P.; Kwon S.; Norman T. C.; Sarohia R.; Leost M.; Meijer L.; Schultz P. G. Synthesis and Application of Functionally Diverse 2,6,9-Trisubstituted Purine Libraries as CDK Inhibitors. Chem. Biol. 1999, 6, 361–375. 10.1016/S1074-5521(99)80048-9. PubMed DOI
Zatloukal M.; Jorda R.; Gucký T.; Řezníčková E.; Voller J.; Pospíšil T.; Malínková V.; Adamcová H.; Kryštof V.; Strnad M. Synthesis and in Vitro Biological Evaluation of 2,6,9-Trisubstituted Purines Targeting Multiple Cyclin-Dependent Kinases. Eur. J. Med. Chem. 2013, 61, 61–72. 10.1016/j.ejmech.2012.06.036. PubMed DOI
Gucký T.; Jorda R.; Zatloukal M.; Bazgier V.; Berka K.; Řezníčková E.; Béres T.; Strnad M.; Kryštof V. A Novel Series of Highly Potent 2,6,9-Trisubstituted Purine Cyclin-Dependent Kinase Inhibitors. J. Med. Chem. 2013, 56, 6234–6247. 10.1021/jm4006884. PubMed DOI
Ali E. M. H.; Abdel-Maksoud M. S.; Oh C. H. Thieno[2,3-d]Pyrimidine as a Promising Scaffold in Medicinal Chemistry: Recent Advances. Bioorg. Med. Chem. 2019, 27, 1159–1194. 10.1016/j.bmc.2019.02.044. PubMed DOI
Wang R.; Yu S.; Zhao X.; Chen Y.; Yang B.; Wu T.; Hao C.; Zhao D.; Cheng M. Design, Synthesis, Biological Evaluation and Molecular Docking Study of Novel Thieno[3,2-d]Pyrimidine Derivatives as Potent FAK Inhibitors. Eur. J. Med. Chem. 2020, 188, 112024.10.1016/j.ejmech.2019.112024. PubMed DOI
Islam F.; Quadery T. M. Therapeutic Potential, Synthesis, Patent Evaluation and SAR Studies of Thieno[3,2-d]Pyrimidine Derivatives: Recent Updates. Curr. Drug Targets 2021, 22, 1944–1963. 10.2174/1389450122666210526094047. PubMed DOI
Al-Azmi A. Pyrazolo[1,5-a]Pyrimidines: A Close Look into Their Synthesis and Applications. Curr. Org. Chem. 2019, 23, 721–743. 10.2174/1385272823666190410145238. DOI
Cherukupalli S.; Karpoormath R.; Chandrasekaran B.; Hampannavar G. A.; Thapliyal N.; Palakollu V. N. An Insight on Synthetic and Medicinal Aspects of Pyrazolo[1,5-a]Pyrimidine Scaffold. Eur. J. Med. Chem. 2017, 126, 298–352. 10.1016/j.ejmech.2016.11.019. PubMed DOI
Jorda R.; Paruch K.; Krystof V. Cyclin-Dependent Kinase Inhibitors Inspired by Roscovitine: Purine Bioisosteres. Curr. Pharm. Des. 2012, 18, 2974–2980. 10.2174/138161212800672804. PubMed DOI
Bavetsias V.; Crumpler S.; Sun C.; Avery S.; Atrash B.; Faisal A.; Moore A. S.; Kosmopoulou M.; Brown N.; Sheldrake P. W.; et al. Optimization of Imidazo[4,5-b]Pyridine-Based Kinase Inhibitors: Identification of a Dual FLT3/Aurora Kinase Inhibitor as an Orally Bioavailable Preclinical Development Candidate for the Treatment of Acute Myeloid Leukemia. J. Med. Chem. 2012, 55, 8721–8734. 10.1021/jm300952s. PubMed DOI PMC
Elattar K. M.; Doğru Mert B. Recent Developments in the Chemistry of Bicyclic 6-6 Systems: Chemistry of Pyrido[4,3-d] Pyrimidines. RSC Adv. 2016, 6, 71827–71851. 10.1039/C6RA12364C. DOI
Garrido A.; Vera G.; Delaye P. O.; Enguehard-Gueiffier C. Imidazo[1,2-b]Pyridazine as Privileged Scaffold in Medicinal Chemistry: An Extensive Review. Eur. J. Med. Chem. 2021, 226, 11386710.1016/j.ejmech.2021.113867. PubMed DOI
Kusakabe K. I.; Ide N.; Daigo Y.; Itoh T.; Yamamoto T.; Hashizume H.; Nozu K.; Yoshida H.; Tadano G.; Tagashira S.; et al. Discovery of Imidazo[1,2-b]Pyridazine Derivatives: Selective and Orally Available Mps1 (TTK) Kinase Inhibitors Exhibiting Remarkable Antiproliferative Activity. J. Med. Chem. 2015, 58, 1760–1775. 10.1021/jm501599u. PubMed DOI
Tor Y.; Del Valle S.; Jaramillo D.; Srivatsan S. G.; Rios A.; Weizman H. Designing New Isomorphic Fluorescent Nucleobase Analogues: The Thieno[3,2-d]Pyrimidine Core. Tetrahedron 2007, 63, 3608–3614. 10.1016/j.tet.2007.01.075. DOI
Myers S. M.; Bawn R. H.; Bisset L. C.; Blackburn T. J.; Cottyn B.; Molyneux L.; Wong A. C.; Cano C.; Clegg W.; Harrington R. W.; et al. High-Throughput Screening and Hit Validation of Extracellular-Related Kinase 5 (ERK5) Inhibitors. ACS Comb. Sci. 2016, 18, 444–455. 10.1021/acscombsci.5b00155. PubMed DOI
Winters G.; Sala A.; De Paoli A.; Conti M. Reaction of Cyclic Ketones with 5-Aminopyrazoles and 5-Aminoisoxazoles. Synthesis 1984, 1984, 1050–1052. 10.1055/s-1984-31076. DOI
Fraley M. E.; Hoffman W. F.; Rubino R. S.; Hungate R. W.; Tebben A. J.; Rutledge R. Z.; McFall R. C.; Huckle W. R.; Kendall R. L.; Coll K. E.; Thomas K. A. Synthesis and Initial SAR Studies of 3,6-Disubstituted Pyrazolo[1,5-a]Pyrimidines: A New Class of KDR Kinase Inhibitors. Bioorg. Med. Chem. Lett. 2002, 12, 2767–2770. 10.1016/S0960-894X(02)00525-5. PubMed DOI
Kosugi T.; Mitchell D. R.; Fujino A.; Imai M.; Kambe M.; Kobayashi S.; Makino H.; Matsueda Y.; Oue Y.; Komatsu K.; et al. Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 (MAPKAP-K2) as an Antiinflammatory Target: Discovery and in Vivo Activity of Selective Pyrazolo[1,5-a]Pyrimidine Inhibitors Using a Focused Library and Structure-Based Optimization Approach. J. Med. Chem. 2012, 55, 6700–6715. 10.1021/jm300411k. PubMed DOI
Klejch T.; Keough D. T.; Chavchich M.; Travis J.; Skácel J.; Pohl R.; Janeba Z.; Edstein M. D.; Avery V. M.; Guddat L. W.; Hocková D. Sulfide, Sulfoxide and Sulfone Bridged Acyclic Nucleoside Phosphonates as Inhibitors of the Plasmodium Falciparum and Human 6-Oxopurine Phosphoribosyltransferases: Synthesis and Evaluation. Eur. J. Med. Chem. 2019, 183, 11166710.1016/j.ejmech.2019.111667. PubMed DOI
Dvořáková H.; Holý A. Synthesis and Biological Effects of N-(2-Phosphonomethoxyethyl) Derivatives of Deazapurine Bases. Collect. Czech. Chem. Commun. 1993, 58, 1419–1429. 10.1135/cccc19931419. DOI
Jansa P.; Kvasnica M.; Mackman R. L.. Fused Pyrimidine Compounds for the Treatment of HIV. International Patent WO2016/105532, 30 June 2016.
Mejdrová I.; Chalupská D.; Plačková P.; Müller C.; Šála M.; Klíma M.; Baumlová A.; Hřebabecký H.; Procházková E.; Dejmek M.; et al. Rational Design of Novel Highly Potent and Selective Phosphatidylinositol 4-Kinase IIIβ (PI4KB) Inhibitors as Broad-Spectrum Antiviral Agents and Tools for Chemical Biology. J. Med. Chem. 2017, 60, 100–118. 10.1021/acs.jmedchem.6b01465. PubMed DOI
Terme T.; Maldonado J.; Crozet M. P.; Vanelle P.; Galtier C.; Gueiffier A. Synthesis of 2-Substituted-3-Nitroimidazo[1, 2-b]Pyridazines as Potential Biologically Active Agents. J. Heterocycl. Chem. 2002, 39, 173–177. 10.1002/jhet.5570390125. DOI
Trabanco-Suarez A. A.; Tresadern G. J.; Vega Ramiro J. A.; Cid-Nunez J. M.. Imidazo[1,2-a]Pyridine Derivatives and Their Use as Positive Allosteric Modulators of MGLUR2 Receptors. International Patent WO2009/062676 A2, 22 May 2009.
Kim K. T.; Baird K.; Davis S.; Piloto O.; Levis M.; Li L.; Chen P.; Meltzer P.; Small D. Constitutive Fms-like Tyrosine Kinase 3 Activation Results in Specific Changes in Gene Expression in Myeloid Leukaemic Cells. Br. J. Haematol. 2007, 138, 603–615. 10.1111/j.1365-2141.2007.06696.x. PubMed DOI
Warkentin A. A.; Lopez M. S.; Lasater E. A.; Lin K.; He B. L.; Leung A. Y. h.; Smith C. C.; Shah N. P.; Shokat K. M. Overcoming Myelosuppression Due to Synthetic Lethal Toxicity for FLT3-Targeted Acute Myeloid Leukemia Therapy. eLife 2014, 3, e0344510.7554/eLife.03445. PubMed DOI PMC
Griffith J.; Black J.; Faerman C.; Swenson L.; Wynn M.; Lu F.; Lippke J.; Saxena K. The Structural Basis for Autoinhibition of FLT3 by the Juxtamembrane Domain. Mol. Cell 2004, 13, 169–178. 10.1016/S1097-2765(03)00505-7. PubMed DOI
Šála M.; Hollinger K. R.; Hollinger K. R.; Hollinger K. R.; Thomas A. G.; Dash R. P.; Tallon C.; Tallon C.; Veeravalli V.; Veeravalli V.; et al. Novel Human Neutral Sphingomyelinase 2 Inhibitors as Potential Therapeutics for Alzheimer’s Disease. J. Med. Chem. 2020, 63, 6028–6056. 10.1021/acs.jmedchem.0c00278. PubMed DOI PMC
Colombano G.; Caldwell J. J.; Matthews T. P.; Bhatia C.; Joshi A.; McHardy T.; Mok N. Y.; Newbatt Y.; Pickard L.; Strover J.; et al. Binding to an Unusual Inactive Kinase Conformation by Highly Selective Inhibitors of Inositol-Requiring Enzyme 1α Kinase-Endoribonuclease. J. Med. Chem. 2019, 62, 2447–2465. 10.1021/acs.jmedchem.8b01721. PubMed DOI PMC
Jorda R.; Hendrychová D.; Voller J.; Řezníčková E.; Gucký T.; Kryštof V. How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases?. J. Med. Chem. 2018, 61, 9105–9120. 10.1021/acs.jmedchem.8b00049. PubMed DOI
Eid S.; Turk S.; Volkamer A.; Rippmann F.; Fulle S. KinMap: a Web-based Tool for Interactive Navigation through Human Kinome Data. BMC Bioinf. 2017, 18, 1610.1186/s12859-016-1433-7. PubMed DOI PMC
Ye J.; Coulouris G.; Zaretskaya I.; Cutcutache I.; Rozen S.; Madden T. L. Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinf. 2012, 13, 13410.1186/1471-2105-13-134. PubMed DOI PMC
Livak K. J.; Schmittgen T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25, 402–408. 10.1006/meth.2001.1262. PubMed DOI