Inhibition of FLT3-ITD Kinase in Acute Myeloid Leukemia by New Imidazo[1,2-b]pyridazine Derivatives Identified by Scaffold Hopping

. 2023 Aug 24 ; 66 (16) : 11133-11157. [epub] 20230803

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37535845

FLT3 kinase is a potential drug target in acute myeloid leukemia (AML). Patients with FLT3 mutations typically have higher relapse rates and worse outcomes than patients without FLT3 mutations. In this study, we investigated the suitability of various heterocycles as central cores of FLT3 inhibitors, including thieno[3,2-d]pyrimidine, pyrazolo[1,5-a]pyrimidine, imidazo[4,5-b]pyridine, pyrido[4,3-d]pyrimidine, and imidazo[1,2-b]pyridazine. Our assays revealed a series of imidazo[1,2-b]pyridazines with high potency against FLT3. Compound 34f showed nanomolar inhibitory activity against recombinant FLT3-ITD and FLT3-D835Y (IC50 values 4 and 1 nM, respectively) as well as in the FLT3-ITD-positive AML cell lines MV4-11, MOLM-13, and MOLM-13 expressing the FLT3-ITD-D835Y mutant (GI50 values of 7, 9, and 4 nM, respectively). In contrast, FLT3-independent cell lines were much less sensitive. In vitro experiments confirmed suppression of FLT3 downstream signaling pathways. Finally, the treatment of MV4-11 xenograft-bearing mice with 34f at doses of 5 and 10 mg/kg markedly blocked tumor growth without any adverse effects.

Zobrazit více v PubMed

Döhner H.; Weisdorf D. J.; Bloomfield C. D. Acute Myeloid Leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. 10.1056/NEJMra1406184. PubMed DOI

Short N. J.; Rytting M. E.; Cortes J. E. Acute Myeloid Leukaemia. Lancet 2018, 392, 593–606. 10.1016/S0140-6736(18)31041-9. PubMed DOI PMC

Prada-Arismendy J.; Arroyave J. C.; Röthlisberger S. Molecular Biomarkers in Acute Myeloid Leukemia. Blood Rev. 2017, 31, 63–76. 10.1016/j.blre.2016.08.005. PubMed DOI

Kazi J. U.; Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol. Rev. 2019, 99, 1433–1466. 10.1152/physrev.00029.2018. PubMed DOI

Gilliland D. G.; Griffin J. D. The Roles of FLT3 in Hematopoiesis and Leukemia. Blood 2002, 100, 1532–1542. 10.1182/blood-2002-02-0492. PubMed DOI

Daver N.; Schlenk R. F.; Russell N. H.; Levis M. J. Targeting FLT3 Mutations in AML: Review of Current Knowledge and Evidence. Leukemia 2019, 33, 299–312. 10.1038/s41375-018-0357-9. PubMed DOI PMC

Stirewalt D. L.; Kopecky K. J.; Meshinchi S.; Engel J. H.; Pogosova-Agadjanyan E. L.; Linsley J.; Slovak M. L.; Willman C. L.; Radich J. P. Size of FLT3 Internal Tandem Duplication Has Prognostic Significance in Patients with Acute Myeloid Leukemia. Blood 2006, 107, 3724–3726. 10.1182/blood-2005-08-3453. PubMed DOI PMC

Sutamtewagul G.; Vigil C. E. Clinical Use of FLT3 Inhibitors in Acute Myeloid Leukemia. OncoTargets Ther. 2018, Volume 11, 7041–7052. 10.2147/OTT.S171640. PubMed DOI PMC

Thomas C. M.; Campbell P. FLT3 Inhibitors in Acute Myeloid Leukemia: Current and Future. J. Oncol. Pharm. Pract. 2019, 25, 163–171. 10.1177/1078155218802620. PubMed DOI

Zhong Y.; Qiu R. Z.; Sun S. L.; Zhao C.; Fan T. Y.; Chen M.; Li N. G.; Shi Z. H. Small-Molecule Fms-like Tyrosine Kinase 3 Inhibitors: An Attractive and Efficient Method for the Treatment of Acute Myeloid Leukemia. J. Med. Chem. 2020, 63, 12403–12428. 10.1021/acs.jmedchem.0c00696. PubMed DOI

Köprülüoğlu C.; Dejmek M.; Šála M.; Ajani H.; Hřebabecký H.; Fanfrlík J.; Jorda R.; Dračínský M.; Procházková E.; Šácha P.; et al. Optimization of Norbornyl-Based Carbocyclic Nucleoside Analogs as Cyclin-Dependent Kinase 2 Inhibitors. J. Mol. Recognit. 2020, 33, e284210.1002/jmr.2842. PubMed DOI

Gucký T.; Řezníčková E.; Radošová Muchová T.; Jorda R.; Klejová Z.; Malínková V.; Berka K.; Bazgier V.; Ajani H.; Lepšík M.; et al. Discovery of N 2 -(4-Amino-Cyclohexyl)-9-Cyclopentyl- N 6 -(4-Morpholin-4-ylmethyl-Phenyl)- 9H-Purine-2,6-Diamine as a Potent FLT3 Kinase Inhibitor for Acute Myeloid Leukemia with FLT3 Mutations. J. Med. Chem. 2018, 61, 3855–3869. 10.1021/acs.jmedchem.7b01529. PubMed DOI

Chang Y.-T.; Gray N. S.; Rosania G. R.; Sutherlin D. P.; Kwon S.; Norman T. C.; Sarohia R.; Leost M.; Meijer L.; Schultz P. G. Synthesis and Application of Functionally Diverse 2,6,9-Trisubstituted Purine Libraries as CDK Inhibitors. Chem. Biol. 1999, 6, 361–375. 10.1016/S1074-5521(99)80048-9. PubMed DOI

Zatloukal M.; Jorda R.; Gucký T.; Řezníčková E.; Voller J.; Pospíšil T.; Malínková V.; Adamcová H.; Kryštof V.; Strnad M. Synthesis and in Vitro Biological Evaluation of 2,6,9-Trisubstituted Purines Targeting Multiple Cyclin-Dependent Kinases. Eur. J. Med. Chem. 2013, 61, 61–72. 10.1016/j.ejmech.2012.06.036. PubMed DOI

Gucký T.; Jorda R.; Zatloukal M.; Bazgier V.; Berka K.; Řezníčková E.; Béres T.; Strnad M.; Kryštof V. A Novel Series of Highly Potent 2,6,9-Trisubstituted Purine Cyclin-Dependent Kinase Inhibitors. J. Med. Chem. 2013, 56, 6234–6247. 10.1021/jm4006884. PubMed DOI

Ali E. M. H.; Abdel-Maksoud M. S.; Oh C. H. Thieno[2,3-d]Pyrimidine as a Promising Scaffold in Medicinal Chemistry: Recent Advances. Bioorg. Med. Chem. 2019, 27, 1159–1194. 10.1016/j.bmc.2019.02.044. PubMed DOI

Wang R.; Yu S.; Zhao X.; Chen Y.; Yang B.; Wu T.; Hao C.; Zhao D.; Cheng M. Design, Synthesis, Biological Evaluation and Molecular Docking Study of Novel Thieno[3,2-d]Pyrimidine Derivatives as Potent FAK Inhibitors. Eur. J. Med. Chem. 2020, 188, 112024.10.1016/j.ejmech.2019.112024. PubMed DOI

Islam F.; Quadery T. M. Therapeutic Potential, Synthesis, Patent Evaluation and SAR Studies of Thieno[3,2-d]Pyrimidine Derivatives: Recent Updates. Curr. Drug Targets 2021, 22, 1944–1963. 10.2174/1389450122666210526094047. PubMed DOI

Al-Azmi A. Pyrazolo[1,5-a]Pyrimidines: A Close Look into Their Synthesis and Applications. Curr. Org. Chem. 2019, 23, 721–743. 10.2174/1385272823666190410145238. DOI

Cherukupalli S.; Karpoormath R.; Chandrasekaran B.; Hampannavar G. A.; Thapliyal N.; Palakollu V. N. An Insight on Synthetic and Medicinal Aspects of Pyrazolo[1,5-a]Pyrimidine Scaffold. Eur. J. Med. Chem. 2017, 126, 298–352. 10.1016/j.ejmech.2016.11.019. PubMed DOI

Jorda R.; Paruch K.; Krystof V. Cyclin-Dependent Kinase Inhibitors Inspired by Roscovitine: Purine Bioisosteres. Curr. Pharm. Des. 2012, 18, 2974–2980. 10.2174/138161212800672804. PubMed DOI

Bavetsias V.; Crumpler S.; Sun C.; Avery S.; Atrash B.; Faisal A.; Moore A. S.; Kosmopoulou M.; Brown N.; Sheldrake P. W.; et al. Optimization of Imidazo[4,5-b]Pyridine-Based Kinase Inhibitors: Identification of a Dual FLT3/Aurora Kinase Inhibitor as an Orally Bioavailable Preclinical Development Candidate for the Treatment of Acute Myeloid Leukemia. J. Med. Chem. 2012, 55, 8721–8734. 10.1021/jm300952s. PubMed DOI PMC

Elattar K. M.; Doğru Mert B. Recent Developments in the Chemistry of Bicyclic 6-6 Systems: Chemistry of Pyrido[4,3-d] Pyrimidines. RSC Adv. 2016, 6, 71827–71851. 10.1039/C6RA12364C. DOI

Garrido A.; Vera G.; Delaye P. O.; Enguehard-Gueiffier C. Imidazo[1,2-b]Pyridazine as Privileged Scaffold in Medicinal Chemistry: An Extensive Review. Eur. J. Med. Chem. 2021, 226, 11386710.1016/j.ejmech.2021.113867. PubMed DOI

Kusakabe K. I.; Ide N.; Daigo Y.; Itoh T.; Yamamoto T.; Hashizume H.; Nozu K.; Yoshida H.; Tadano G.; Tagashira S.; et al. Discovery of Imidazo[1,2-b]Pyridazine Derivatives: Selective and Orally Available Mps1 (TTK) Kinase Inhibitors Exhibiting Remarkable Antiproliferative Activity. J. Med. Chem. 2015, 58, 1760–1775. 10.1021/jm501599u. PubMed DOI

Tor Y.; Del Valle S.; Jaramillo D.; Srivatsan S. G.; Rios A.; Weizman H. Designing New Isomorphic Fluorescent Nucleobase Analogues: The Thieno[3,2-d]Pyrimidine Core. Tetrahedron 2007, 63, 3608–3614. 10.1016/j.tet.2007.01.075. DOI

Myers S. M.; Bawn R. H.; Bisset L. C.; Blackburn T. J.; Cottyn B.; Molyneux L.; Wong A. C.; Cano C.; Clegg W.; Harrington R. W.; et al. High-Throughput Screening and Hit Validation of Extracellular-Related Kinase 5 (ERK5) Inhibitors. ACS Comb. Sci. 2016, 18, 444–455. 10.1021/acscombsci.5b00155. PubMed DOI

Winters G.; Sala A.; De Paoli A.; Conti M. Reaction of Cyclic Ketones with 5-Aminopyrazoles and 5-Aminoisoxazoles. Synthesis 1984, 1984, 1050–1052. 10.1055/s-1984-31076. DOI

Fraley M. E.; Hoffman W. F.; Rubino R. S.; Hungate R. W.; Tebben A. J.; Rutledge R. Z.; McFall R. C.; Huckle W. R.; Kendall R. L.; Coll K. E.; Thomas K. A. Synthesis and Initial SAR Studies of 3,6-Disubstituted Pyrazolo[1,5-a]Pyrimidines: A New Class of KDR Kinase Inhibitors. Bioorg. Med. Chem. Lett. 2002, 12, 2767–2770. 10.1016/S0960-894X(02)00525-5. PubMed DOI

Kosugi T.; Mitchell D. R.; Fujino A.; Imai M.; Kambe M.; Kobayashi S.; Makino H.; Matsueda Y.; Oue Y.; Komatsu K.; et al. Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 (MAPKAP-K2) as an Antiinflammatory Target: Discovery and in Vivo Activity of Selective Pyrazolo[1,5-a]Pyrimidine Inhibitors Using a Focused Library and Structure-Based Optimization Approach. J. Med. Chem. 2012, 55, 6700–6715. 10.1021/jm300411k. PubMed DOI

Klejch T.; Keough D. T.; Chavchich M.; Travis J.; Skácel J.; Pohl R.; Janeba Z.; Edstein M. D.; Avery V. M.; Guddat L. W.; Hocková D. Sulfide, Sulfoxide and Sulfone Bridged Acyclic Nucleoside Phosphonates as Inhibitors of the Plasmodium Falciparum and Human 6-Oxopurine Phosphoribosyltransferases: Synthesis and Evaluation. Eur. J. Med. Chem. 2019, 183, 11166710.1016/j.ejmech.2019.111667. PubMed DOI

Dvořáková H.; Holý A. Synthesis and Biological Effects of N-(2-Phosphonomethoxyethyl) Derivatives of Deazapurine Bases. Collect. Czech. Chem. Commun. 1993, 58, 1419–1429. 10.1135/cccc19931419. DOI

Jansa P.; Kvasnica M.; Mackman R. L.. Fused Pyrimidine Compounds for the Treatment of HIV. International Patent WO2016/105532, 30 June 2016.

Mejdrová I.; Chalupská D.; Plačková P.; Müller C.; Šála M.; Klíma M.; Baumlová A.; Hřebabecký H.; Procházková E.; Dejmek M.; et al. Rational Design of Novel Highly Potent and Selective Phosphatidylinositol 4-Kinase IIIβ (PI4KB) Inhibitors as Broad-Spectrum Antiviral Agents and Tools for Chemical Biology. J. Med. Chem. 2017, 60, 100–118. 10.1021/acs.jmedchem.6b01465. PubMed DOI

Terme T.; Maldonado J.; Crozet M. P.; Vanelle P.; Galtier C.; Gueiffier A. Synthesis of 2-Substituted-3-Nitroimidazo[1, 2-b]Pyridazines as Potential Biologically Active Agents. J. Heterocycl. Chem. 2002, 39, 173–177. 10.1002/jhet.5570390125. DOI

Trabanco-Suarez A. A.; Tresadern G. J.; Vega Ramiro J. A.; Cid-Nunez J. M.. Imidazo[1,2-a]Pyridine Derivatives and Their Use as Positive Allosteric Modulators of MGLUR2 Receptors. International Patent WO2009/062676 A2, 22 May 2009.

Kim K. T.; Baird K.; Davis S.; Piloto O.; Levis M.; Li L.; Chen P.; Meltzer P.; Small D. Constitutive Fms-like Tyrosine Kinase 3 Activation Results in Specific Changes in Gene Expression in Myeloid Leukaemic Cells. Br. J. Haematol. 2007, 138, 603–615. 10.1111/j.1365-2141.2007.06696.x. PubMed DOI

Warkentin A. A.; Lopez M. S.; Lasater E. A.; Lin K.; He B. L.; Leung A. Y. h.; Smith C. C.; Shah N. P.; Shokat K. M. Overcoming Myelosuppression Due to Synthetic Lethal Toxicity for FLT3-Targeted Acute Myeloid Leukemia Therapy. eLife 2014, 3, e0344510.7554/eLife.03445. PubMed DOI PMC

Griffith J.; Black J.; Faerman C.; Swenson L.; Wynn M.; Lu F.; Lippke J.; Saxena K. The Structural Basis for Autoinhibition of FLT3 by the Juxtamembrane Domain. Mol. Cell 2004, 13, 169–178. 10.1016/S1097-2765(03)00505-7. PubMed DOI

Šála M.; Hollinger K. R.; Hollinger K. R.; Hollinger K. R.; Thomas A. G.; Dash R. P.; Tallon C.; Tallon C.; Veeravalli V.; Veeravalli V.; et al. Novel Human Neutral Sphingomyelinase 2 Inhibitors as Potential Therapeutics for Alzheimer’s Disease. J. Med. Chem. 2020, 63, 6028–6056. 10.1021/acs.jmedchem.0c00278. PubMed DOI PMC

Colombano G.; Caldwell J. J.; Matthews T. P.; Bhatia C.; Joshi A.; McHardy T.; Mok N. Y.; Newbatt Y.; Pickard L.; Strover J.; et al. Binding to an Unusual Inactive Kinase Conformation by Highly Selective Inhibitors of Inositol-Requiring Enzyme 1α Kinase-Endoribonuclease. J. Med. Chem. 2019, 62, 2447–2465. 10.1021/acs.jmedchem.8b01721. PubMed DOI PMC

Jorda R.; Hendrychová D.; Voller J.; Řezníčková E.; Gucký T.; Kryštof V. How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases?. J. Med. Chem. 2018, 61, 9105–9120. 10.1021/acs.jmedchem.8b00049. PubMed DOI

Eid S.; Turk S.; Volkamer A.; Rippmann F.; Fulle S. KinMap: a Web-based Tool for Interactive Navigation through Human Kinome Data. BMC Bioinf. 2017, 18, 1610.1186/s12859-016-1433-7. PubMed DOI PMC

Ye J.; Coulouris G.; Zaretskaya I.; Cutcutache I.; Rozen S.; Madden T. L. Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinf. 2012, 13, 13410.1186/1471-2105-13-134. PubMed DOI PMC

Livak K. J.; Schmittgen T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25, 402–408. 10.1006/meth.2001.1262. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...