Waste-activated sludge disruption by dry ice: bench scale study and evaluation of heat phase transformations
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
31290045
PubMed Central
PMC6733821
DOI
10.1007/s11356-019-05889-2
PII: 10.1007/s11356-019-05889-2
Knihovny.cz E-zdroje
- Klíčová slova
- Dry ice, Infrared radiation, Organic and inorganic matter, Phase transformation processes, Waste-activated sludge,
- MeSH
- amoniak MeSH
- měření biologické spotřeby kyslíku MeSH
- odpad tekutý - odstraňování metody MeSH
- odpadní vody chemie MeSH
- sublimace chemická MeSH
- suchý led * MeSH
- teoretické modely * MeSH
- tranzitní teplota MeSH
- změna skupenství * MeSH
- zmrazování MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amoniak MeSH
- odpadní vody MeSH
- suchý led * MeSH
The freezing process consists of dissipating heat from the product until the final temperature is lower than the temperature of crystallisation of that product. Freezing can be used for numerous applications, including for disruption of waste-activated sludge (WAS). The aim of this study was to calculate the estimated amount of heat conveyed between the solidified carbon dioxide and the WAS, in the following ratios: 0.25:1; 0.5:1; 0.75:1 and 1:1. In heat of phase transformations, dry ice sublimation, water solidification, the amount of heat transferred by other substances and heat transferred from the sludge (dry sludge) were taken into account during the process of WAS freezing. Heat changes on the surface of WAS were registered using a thermovision camera. The effectiveness of WAS disintegration was confirmed by several biochemical parameters such as soluble chemical oxygen demand (increase over 14 times), degree of disintegration (48%), proteins (increase over 5 times), carbohydrates (increase almost 7 times), RNA (increase by 2.23 mg L-1), ammonia nitrogen (increase over 23 times), phosphates (increase almost 27 times) and turbidity (increased over 7 times). It was found that dry ice pretreatment of WAS can be an intriguing alternative for the conventional methods used.
Zobrazit více v PubMed
Ak MS, Muz M, Komesli OT, Gökçay CF. Enhancement of bio-gas production and xenobiotics degradation during anaerobic sludge digestion by ozone treated feed sludge. Chem Eng J. 2013;230:499–505. doi: 10.1016/j.cej.2013.06.113. DOI
Ali M, Zhang J, Raga R, Lavagnolo MC, Pivato A, Wang X, Zhang Y, Cossu R, Yue D. Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling. Front Env Sci Eng. 2018;12:5. doi: 10.1007/s11783-018-1031-1. DOI
Amano RS, Sunden B (2010) Computational fluid gynamics and heat transfer. In: R.S. Amano BS (ed) Computational fluid gynamics and heat transfer. WIT Press.
Aylin Alagöz B, Yenigün O, Erdinçler A. Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: comparison with microwave pre-treatment. Ultrason Sonochem. 2018;40:193–200. doi: 10.1016/j.ultsonch.2017.05.014. PubMed DOI
Babatunde AO, Zhao YQ. Constructive approaches toward water treatment works sludge management: an international review of beneficial reuses. Crit Rev Environ Sci Technol. 2007;37:129–164. doi: 10.1080/10643380600776239. DOI
Carbajo JB, Petre AL, Rosal R, Berná A, Letón P, García-Calvo E, Perdigón-Melón JA. Ozonation as pre-treatment of activated sludge process of a wastewater containing benzalkonium chloride and NiO nanoparticles. Chem Eng J. 2016;283:740–749. doi: 10.1016/j.cej.2015.08.001. DOI
Carrère H, Dumas C, Battimelli A, Batstone DJ, Delgenès JP, Steyer JP, Ferrer I. Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater. 2010;183:1–15. doi: 10.1016/j.jhazmat.2010.06.129. PubMed DOI
Chen GW, Lin WW, Lee DJ. Capillary suction time (CST) as a measure of sludge dewaterability. Water Sci Technol. 1996;34:443–448. doi: 10.2166/wst.1996.0462. DOI
Chen Y, Jiang J, Zhao Q. Freezing/thawing effect on sewage sludge degradation and electricity generation in microbial fuel cell. Water Sci Technol. 2014;70:444–449. doi: 10.2166/wst.2014.226. PubMed DOI
Diak J, Örmeci B, Proux C. Freeze–thaw treatment of RBC sludge from a remote mining exploration facility in subarctic Canada. Water Sci Technol. 2011;63:1309–1313. doi: 10.2166/wst.2011.376. PubMed DOI
Gao W. Freezing as a combined wastewater sludge pretreatment and conditioning method. Desalination. 2011;268:170–173. doi: 10.1016/j.desal.2010.10.014. DOI
Gebreeyessus GD, Jenicek P (2016) Thermophilic versus mesophilic anaerobic digestion of sewage sludge: a comparative review. Bioengineering (Basel) 3. 10.3390/bioengineering3020015 PubMed PMC
Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for general and molecular bacteriology. Washington, D.C: John Wiley & Sons, Ltd; 1994.
Gogate PR, Shirgaonkar IZ, Sivakumar M, Senthilkumar P, Vichare NP, Pandit AB. Cavitation reactors: efficiency assessment using a model reaction. AICHE J. 2001;47:2526–2538. doi: 10.1002/aic.690471115. DOI
Grübel K, Machnicka A (2013) Infrared wave analysis after hydrodynamic and acoustic cavitation as effective method of confirming sewage sludge destruction. J. Environ Sci Health A 49(1):101–107. 10.1080/10934529.2013.824738 PubMed
Grübel K, Suschka J. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process. Environ Sci Pollut Res. 2015;22:7258–7270. doi: 10.1007/s11356-014-3705-y. PubMed DOI PMC
Grübel K, Machnicka A, Nowicka E, Wacławek S. Mesophilic-thermophilic fermentation process of waste activated sludge after hybrid disintegration. Ecol Chem Eng S. 2014;21:125–136.
Grübel K, Wacławek S, Machnicka A, Nowicka E. Synergetic disintegration of waste activated sludge: improvement of anaerobic digestion and hygienization of sludge. J Environ Sci Health A. 2018;53:1067–1074. doi: 10.1080/10934529.2018.1474579. PubMed DOI
Gugulothu R, Sanke N, Gupta AVSSKS. Numerical study of heat transfer characteristics in shell-and-tube heat exchanger. In: Srinivasacharya D, Reddy K, editors. Numerical heat transfer and fluid flow. Lecture Notes in Mechanical Engineering. Singapore: Springer; 2019. pp. 375–383.
Hu J, Johnston KP, Williams RO. Rapid dissolving high potency danazol powders produced by spray freezing into liquid process. Int J Pharm. 2004;271:145–154. doi: 10.1016/j.ijpharm.2003.11.003. PubMed DOI
Hu K, Jiang J-Q, Zhao Q-L, Lee DJ, Wang K, Qiu W. Conditioning of wastewater sludge using freezing and thawing: role of curing. Water Res. 2011;45:5969–5976. doi: 10.1016/j.watres.2011.08.064. PubMed DOI
Hung WT, Chang IL, Lin WW, Lee DJ. Unidirectional freezing of waste-activated sludges: effects of freezing speed. Environ Sci Technol. 1996;30:2391–2396. doi: 10.1021/es950889x. DOI
Ismalaj T, Sackett DL. An inexpensive replacement for dry ice in the laboratory. Anal Biochem. 2015;474:38–39. doi: 10.1016/j.ab.2015.01.008. PubMed DOI PMC
Jang HM, Cho HU, Park SK, Ha JH, Park JM. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process. Water Res. 2014;48:1–14. doi: 10.1016/j.watres.2013.06.041. PubMed DOI
Jean DS, Lee DJ, Chang CY. Direct sludge freezing using dry ice. Adv Environ Res. 2001;5:145–150. doi: 10.1016/S1093-0191(00)00052-6. DOI
Jeyasekaran G, Ganesan P, Anandaraj R, Jeya Shakila R, Sukumar D. Quantitative and qualitative studies on the bacteriological quality of Indian white shrimp (Penaeus indicus) stored in dry ice. Food Microbiol. 2006;23:526–533. doi: 10.1016/j.fm.2005.09.009. PubMed DOI
Kardos L, Juhász A, Palkó GY, et al. Comparing of mesophilic and thermophilic anaerobic fermented sewage sludge based on chemical and biochemical tests. Appl Ecol Environ Res. 2011;9:293–302. doi: 10.15666/aeer/0903_293302. DOI
Kavitha S, Jayashree C, Adish Kumar S, Yeom IT, Rajesh Banu J. The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment. Bioresour Technol. 2014;168:159–166. doi: 10.1016/j.biortech.2014.01.118. PubMed DOI
Kidak R, Wilhelm A-M, Delmas H. Effect of process parameters on the energy requirement in ultrasonical treatment of waste sludge. Chem Eng Process Process Intensif. 2009;48:1346–1352. doi: 10.1016/j.cep.2009.06.010. DOI
Kim C, Ahn J-Y, Kim TY, Shin WS, Hwang I. Activation of persulfate by nanosized zero-valent iron (NZVI): mechanisms and transformation products of NZVI. Environ Sci Technol. 2018;52:3625–3633. doi: 10.1021/acs.est.7b05847. PubMed DOI
Kreith F, Tchobanoglous G. Handbook of solid waste management. New York: McGraw-Hill; 2002.
Kuglarz M, Grübel K, Bohdziewicz J. Post-digestion liquor treatment in the method combining chemical precipitation with reverse osmosis. Arch Environ Prot. 2014;40:29–42. doi: 10.2478/aep-2014-0030. DOI
Li Y, Yuan X, Wu Z, Wang H, Xiao Z, Wu Y, Chen X, Zeng G. Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process. Chem Eng J. 2016;303:636–645. doi: 10.1016/j.cej.2016.06.041. DOI
Liu J, Wei Y, Li K, Tong J, Wang Y, Jia R. Microwave-acid pretreatment: a potential process for enhancing sludge dewaterability. Water Res. 2016;90:225–234. doi: 10.1016/j.watres.2015.12.012. PubMed DOI
Liu X, Xu Q, Wang D, Zhao J, Wu Y, Liu Y, Ni BJ, Wang Q, Zeng G, Li X, Yang Q. Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: Performance, mechanisms and applications. Bioresour Technol. 2018;268:230–236. doi: 10.1016/j.biortech.2018.07.109. PubMed DOI
Liu X, Xu Q, Wang D, Wu Y, Yang Q, Liu Y, Wang Q, Li X, Li H, Zeng G, Yang G. Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge. Water Res. 2019;155:142–151. doi: 10.1016/j.watres.2019.02.036. PubMed DOI
Liwarska-Bizukojc E, Ledakowicz S. RNA assay as a method of viable biomass determination in the organic fraction of municipal solid waste suspension. Biotechnol Lett. 2001;23:1057–1060. doi: 10.1023/A:1010550205658. DOI
Lü F, Wang J, Shao L, He P. Enzyme disintegration with spatial resolution reveals different distributions of sludge extracellular polymer substances. Biotechnol Biofuels. 2016;9:29. doi: 10.1186/s13068-016-0444-y. PubMed DOI PMC
Lu J, Dong W, Ji Y, Kong D, Huang Q. Natural organic matter exposed to sulfate radicals increases its potential to form halogenated disinfection byproducts. Environ Sci Technol. 2016;50:5060–5067. doi: 10.1021/acs.est.6b00327. PubMed DOI
Machnicka A, Grübel K. Investigation of the effectiveness of nutrient release from sludge foam after hybrid pretreatment processes by IR analysis and EDX Quantification. Environ Technol (United Kingdom) 2016;37:3120–3130. PubMed
Mirota K, Grübel K, Machnicka A. Design and assessment of cavitational device for enhancement of sewage sludge fermentation. Ochr Sr. 2011;33:47–52.
Montusiewicz A, Lebiocka M, Rożej A, Zacharska E, Pawłowski L. Freezing/thawing effects on anaerobic digestion of mixed sewage sludge. Bioresour Technol. 2010;101:3466–3473. doi: 10.1016/j.biortech.2009.12.125. PubMed DOI
Müller J. Disintegration as a key-step in sewage sludge treatment. Water Sci Technol. 2000;41:123–130. doi: 10.2166/wst.2000.0151. DOI
Nowicka E, Machnicka A. Hygienization of surplus activated sludge by dry ice. Ecol Chem Eng S. 2015;21:651–660.
Örmeci B (2004) Freeze-thaw conditioning of activated sludge: effect of monovalent, divalent and trivalent cations. J Residuals Sci Tech 1:143–150. doi: 1544-8053/04/03
Örmeci B, Aarne Vesilind P. Effect of dissolved organic material and cations on freeze-thaw conditioning of activated and alum sludges. Water Res. 2001;35:4299–4306. doi: 10.1016/S0043-1354(01)00174-9. PubMed DOI
Parthiba Karthikeyan O, Trably E, Mehariya S, Bernet N, Wong JWC, Carrere H. Pretreatment of food waste for methane and hydrogen recovery: a review. Bioresour Technol. 2018;249:1025–1039. doi: 10.1016/j.biortech.2017.09.105. PubMed DOI
Pérez-Elvira SI, Nieto Diez P, Fdz-Polanco F. Sludge minimisation technologies. Rev Environ Sci Bio. 2006;5:375–398. doi: 10.1007/s11157-005-5728-9. DOI
Pilli S, Yan S, Tyagi RD, Surampalli RY. Thermal pretreatment of sewage sludge to enhance anaerobic digestion: a review. Crit Rev Environ Sci Technol. 2015;45:669–702. doi: 10.1080/10643389.2013.876527. DOI
Rice EW, Bridgewater L (2012) Standard methods for the examination of water and wastewater. American Public Health Association.
Şahinkaya S, Sevimli MF. Synergistic effects of sono-alkaline pretreatment on anaerobic biodegradability of waste activated sludge. J Ind Eng Chem. 2013;19:197–206. doi: 10.1016/j.jiec.2012.08.002. DOI
Seviour RJ, Nielsen PH (2010) Microbial ecology of activated sludge. IWA Publishing
Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev. 2009;13:318–345. doi: 10.1016/j.rser.2007.10.005. DOI
Silvestre G, Ruiz B, Fiter M, Ferrer C, Berlanga JG, Alonso S, Canut A. Ozonation as a pre-treatment for anaerobic digestion of waste-activated sludge: Effect of the ozone doses. Ozone Sci Eng. 2015;37:316–322. doi: 10.1080/01919512.2014.985817. DOI
Silvestri D, Wacławek S, Gončuková Z, Padil VVT, Grübel K, Černík M (2018a) A new method for assessment of the sludge disintegration degree with the use of differential centrifugal sedimentation. Environ Technol (United Kingdom):1–8. 10.1080/09593330.2018.1477839 PubMed
Silvestri D, Wacławek S, Sobel B, Torres-Mendieta R, Novotný V, Nguyen NHA, Ševců A, Padil VVT, Müllerová J, Stuchlík M, Papini MP, Černík M, Varma RS. A poly(3-hydroxybutyrate)-chitosan polymer conjugate for the synthesis of safer gold nanoparticles and their applications. Green Chem. 2018;20:4975–4982. doi: 10.1039/C8GC02495B. DOI
Socrates G (2007) Infrared and raman characteristic group frequencies: tables and charts. John Wiley & Sons
Suschka J, Grübel K. Low intensity surplus activated sludge pretreatment before anaerobic digestion. Arch Environ Prot. 2016;43:50–57. doi: 10.1515/aep-2017-0038. DOI
Suschka J, Kowalski E, Mazierski J, Grübel K. Alkaline solubilisation of waste activated sludge (WAS) for soluble organic substrate – (SCOD) production. Arch Environ Prot. 2015;41:29–34. doi: 10.1515/aep-2015-0012. DOI
Tyagi VK, Lo SL. Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review. Rev Environ Sci Biotechnol. 2011;10:215–242. doi: 10.1007/s11157-011-9244-9. DOI
Uma Rani R, Adish Kumar S, Kaliappan S, Yeom IT, Banu JR. Enhancing the anaerobic digestion potential of dairy waste activated sludge by two step sono-alkalization pretreatment. Ultrason Sonochem. 2014;21:1065–1074. doi: 10.1016/j.ultsonch.2013.11.007. PubMed DOI
Vollmer M. Physics of the microwave oven. Phys Educ. 2004;39:74–81. doi: 10.1088/0031-9120/39/1/006. DOI
Wacławek S, Grübel K, Dennis P, Vinod VTP, Černík M. A novel approach for simultaneous improvement of dewaterability, post-digestion liquor properties and toluene removal from anaerobically digested sludge. Chem Eng J. 2016;291:192–198. doi: 10.1016/j.cej.2016.01.103. DOI
Wacławek S, Lutze HV, Grübel K, Vinod VTP, Černík M, Dionysiou DD. Chemistry of persulfates in water and wastewater treatment: a review. Chem Eng J. 2017;330:44–62. doi: 10.1016/j.cej.2017.07.132. DOI
Wang Q, Kuninobu M, Kakimoto K, et al. Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment. Bioresour Technol. 1999;68:309–313. doi: 10.1016/S0960-8524(98)00155-2. DOI
Wang Q, Fujisaki K, Ohsumi Y, Ogawa HI. Enhancement of dewaterability of thickened waste activated sludge by freezing and thawing treatment. J Environ Sci Health A. 2001;36:1361–1371. doi: 10.1081/ESE-100104884. PubMed DOI
Wang Q, Jiang G, Ye L, Yuan Z. Enhancing methane production from waste activated sludge using combined free nitrous acid and heat pre-treatment. Water Res. 2014;63:71–80. doi: 10.1016/j.watres.2014.06.010. PubMed DOI
Wett B, Phothilangka P, Eladawy A. Systematic comparison of mechanical and thermal sludge disintegration technologies. Waste Manag. 2010;30:1057–1062. doi: 10.1016/j.wasman.2009.12.011. PubMed DOI
Wiktor A, Schulz M, Voigt E, Knorr D, Witrowa-Rajchert D. Impact of pulsed electric field on kinetics of immersion freezing, thawing, and on mechanical properties of carrot. ZYWN-NAUK TECHNOL JA. 2015;21:124–137.
Wójcik M, Stachowicz F, Masłoń A. The possibility of sewage sludge conditioning and dewatering with the use of biomass ashes. Eng Prot Environ. 2017;20:153–164. doi: 10.17512/ios.2017.2.1. DOI
Xu Q, Liu X, Fu Y, Li Y, Wang D, Wang Q, Liu Y, An H, Zhao J, Wu Y, Li X, Yang Q, Zeng G. Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: role and significance of rhamnolipid. Bioresour Technol. 2018;267:141–148. doi: 10.1016/j.biortech.2018.07.018. PubMed DOI
Yan Y, Liu Q, Wang K, Jiang L, Yang X, Qian J, Dong X, Qiu B. Enhanced peroxydisulfate electrochemiluminescence for dopamine biosensing based on Au nanoparticle decorated reduced graphene oxide. Analyst. 2013;138:7101–7106. doi: 10.1039/c3an01533e. PubMed DOI
Yi WG, Lo KV, Mavinic DS. Effects of microwave, ultrasonic and enzymatic treatment on chemical and physical properties of waste-activated sludge. J Environ Sci Health A. 2014;49:203–209. doi: 10.1080/10934529.2013.838880. PubMed DOI
Yu G-H, He P-J, Shao L-M, Zhu Y-S. Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment. Water Res. 2008;42:1925–1934. doi: 10.1016/j.watres.2007.11.022. PubMed DOI
Zaia DAM, Verri WA, Zaia CTBV. Determination of total proteins in several tissues of rat: a comparative study among spectrophotometric methods. Microchem J. 2000;64:235–239. doi: 10.1016/S0026-265X(00)00017-5. DOI
Zalba B, Marín JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23:251–283. doi: 10.1016/S1359-4311(02)00192-8. DOI
Zhang Y, Zhang P, Ma B, Wu H, Zhang S, Xu X. Sewage sludge disintegration by high-pressure homogenization: a sludge disintegration model. J Environ Sci (China) 2012;24:814–820. doi: 10.1016/S1001-0742(11)60834-6. PubMed DOI
Zhang S, Guo H, Du L, Liang J, Lu X, Li N, Zhang K. Influence of NaOH and thermal pretreatment on dewatered activated sludge solubilisation and subsequent anaerobic digestion: focused on high-solid state. Bioresour Technol. 2015;185:171–177. doi: 10.1016/j.biortech.2015.02.050. PubMed DOI
Zhou Z, Yang Y, Li X. Effects of ultrasound pretreatment on the characteristic evolutions of drinking water treatment sludge and its impact on coagulation property of sludge recycling process. Ultrason Sonochem. 2015;27:62–71. doi: 10.1016/j.ultsonch.2015.04.018. PubMed DOI