The Polymorphisms of the Peroxisome-Proliferator Activated Receptors' Alfa Gene Modify the Aerobic Training Induced Changes of Cholesterol and Glucose

. 2019 Jul 17 ; 8 (7) : . [epub] 20190717

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31319591

Grantová podpora
UNCE/HUM/032 Univerzita Karlova v Praze
UM0-2012/07/B/NZ7/ 01155 Polish Ministry of Science and Higher Education

BACKGROUND: PPARα is a transcriptional factor that controls the expression of genes involved in fatty acid metabolism, including fatty acid transport, uptake by the cells, intracellular binding, and activation, as well as catabolism (particularly mitochondrial fatty acid oxidation) or storage. PPARA gene polymorphisms may be crucial for maintaining lipid homeostasis and in this way, being responsible for developing specific training-induced physiological reactions. Therefore, we have decided to check if post-training changes of body mass measurements as well as chosen biochemical parameters are modulation by the PPARA genotypes. METHODS: We have examined the genotype and alleles' frequencies (described in PPARA rs1800206 and rs4253778 polymorphic sites) in 168 female participants engaged in a 12-week training program. Body composition and biochemical parameters were measured before and after the completion of a whole training program. RESULTS: Statistical analyses revealed that PPARA intron 7 rs4253778 CC genotype modulate training response by increasing low-density lipoproteins (LDL) and glucose concentration, while PPARA Leu162Val rs1800206 CG genotype polymorphism interacts in a decrease in high-density lipoproteins (HDL) concentration. CONCLUSIONS: Carriers of PPARA intron 7 rs4253778 CC genotype and Leu162Val rs1800206 CG genotype might have potential negative training-induced cholesterol and glucose changes after aerobic exercise.

Zobrazit více v PubMed

Desvergne B., Wahli W. Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocr. Rev. 1999;20:649–688. PubMed

Auboeuf D., Rieusset J., Fajas L., Vallier P., Frering V., Riou J.P., Staels B., Auwerx J., Laville M., Vidal H. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator–activated receptors and liver X receptor-α in humans: No alteration in adipose tissue of obese and NIDDM patients. Diabetes. 1997;46:1319–1327. PubMed

Mukherjee R., Jow L., Croston G.E., Paterniti J.R. Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARγ2 versus PPARγ1 and activation with retinoid X receptor agonists and antagonists. J. Biol. Chem. 1997;272:8071–8076. doi: 10.1074/jbc.272.12.8071. PubMed DOI

Palmer C.N., Hsu M.-H., Griffin K.J., Raucy J.L., Johnson E.F. Peroxisome proliferator activated receptor-α expression in human liver. Mol. Pharm. 1998;53:14–22. doi: 10.1124/mol.53.1.14. PubMed DOI

Willson T.M., Wahli W. Peroxisome proliferator-activated receptor agonists. Curr. Opin. Chem. Biol. 1997;1:235–241. doi: 10.1016/S1367-5931(97)80015-4. PubMed DOI

Dowell P., Peterson V.J., Zabriskie T.M., Leid M. Ligand-induced peroxisome proliferator-activated receptor α conformational change. J. Biol. Chem. 1997;272:2013–2020. doi: 10.1074/jbc.272.3.2013. PubMed DOI

Kliewer S.A., Sundseth S.S., Jones S.A., Brown P.J., Wisely G.B., Koble C.S., Devchand P., Wahli W., Willson T.M., Lenhard J.M., et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc. Natl. Acad. Sci. USA. 1997;94:4318–4323. doi: 10.1073/pnas.94.9.4318. PubMed DOI PMC

Brown P.J., Smith-Oliver T.A., Charifson P.S., Tomkinson N.C., Fivush A.M., Sternbach D.D., Wade L.E., Orband-Miller L., Parks D.J., Blanchard S.G., et al. Identification of peroxisome proliferator-activated receptor ligands from a biased chemical library. Chem. Biol. 1997;4:909–918. doi: 10.1016/S1074-5521(97)90299-4. PubMed DOI

Henke B.R., Blanchard S.G., Brackeen M.F., Brown K.K., Cobb J.E., Collins J.L., Harrington W.W., Jr., Hashim M.A., Hull-Ryde E.A., Kaldor I., et al. N-(2-benzoylphenyl)-L-tyrosine PPARγ agonists. 1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. J. Med. Chem. 1998;41:5020–5036. doi: 10.1021/jm9804127. PubMed DOI

Lehmann J.M., Moore L.B., Smith-Oliver T.A., Wilkison W.O., Willson T.M., Kliewer S.A. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ) J. Biol. Chem. 1995;270:12953–12956. doi: 10.1074/jbc.270.22.12953. PubMed DOI

Gearing K., Göttlicher M., Teboul M., Widmark E., Gustafsson J.-A. Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor. Proc. Natl. Acad. Sci. USA. 1993;90:1440–1444. doi: 10.1073/pnas.90.4.1440. PubMed DOI PMC

Keller H.R., Dreyer C., Medin J., Mahfoudi A., Ozato K., Wahli W. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc. Natl. Acad. Sci. USA. 1993;90:2160–2164. doi: 10.1073/pnas.90.6.2160. PubMed DOI PMC

Juge-Aubry C.E., Hammar E., Siegrist-Kaiser C., Pernin A., Takeshita A., Chin W.W., Burger A.G., Meier C.A. Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor α by phosphorylation of a ligand-independent trans-activating domain. J. Biol. Chem. 1999;274:10505–10510. doi: 10.1074/jbc.274.15.10505. PubMed DOI

Sher T., Yi H.F., McBride O.W., Gonzalez F.J. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry. 1993;32:5598–5604. doi: 10.1021/bi00072a015. PubMed DOI

Hsu M.-H., Palmer C.N., Song W., Griffin K.J., Johnson E.F. A carboxyl-terminal extension of the zinc finger domain contributes to the specificity and polarity of peroxisome proliferator-activated receptor DNA binding. J. Biol. Chem. 1998;273:27988–27997. doi: 10.1074/jbc.273.43.27988. PubMed DOI

Flavell D., Torra I.P., Jamshidi Y., Evans D., Diamond J., Elkeles R., Bujac S.R., Miller G., Talmud P.J., Staels B., et al. Variation in the PPARα gene is associated with altered function in vitro and plasma lipid concentrations in Type II diabetic subjects. Diabetologia. 2000;43:673–680. doi: 10.1007/s001250051357. PubMed DOI

Sapone A., Peters J.M., Sakai S., Tomita S., Papiha S.S., Dai R., Friedman F.K., Gonzalez F.J. The human peroxisome proliferator-activated receptor α gene: identification and functional characterization of two natural allelic variants. Pharm. Genom. 2000;10:321–333. doi: 10.1097/00008571-200006000-00006. PubMed DOI

Vohl M.-C., Lepage P., Gaudet D., Brewer C.G., Bétard C., Perron P., Houde G., Cellier C., Faith J.M., Després J.P., et al. Molecular scanning of the human PPARα gene: Association of the L162V mutation with hyperapobetalipoproteinemia. J. Lipid Res. 2000;41:945–952. PubMed

Elkeles R.S., Diamond J.R., Poulter C., Dhanjil S., Nicolaides A.N., Mahmood S., Richmond W., Mather H., Sharp P., Feher M.D., et al. Cardiovascular outcomes in type 2 diabetes: A double-blind placebo-controlled study of bezafibrate: The St. Mary’s, Ealing, Northwick Park Diabetes Cardiovascular Disease Prevention (SENDCAP) Study. Diabetes Care. 1998;21:641–648. doi: 10.2337/diacare.21.4.641. PubMed DOI

Andrulionytė L., Kuulasmaa T., Chiasson J.-L., Laakso M. Single Nucleotide Polymorphisms of the Peroxisome Proliferator–Activated Receptor-α Gene (PPARA) Influence the Conversion From Impaired Glucose Tolerance to Type 2 Diabetes: The STOP-NIDDM Trial. Diabetes. 2007;56:1181–1186. doi: 10.2337/db06-1110. PubMed DOI

Flavell D.M., Jamshidi Y., Hawe E., Pineda Torra I.S., Taskinen M.-R., Frick M.H., Nieminen M.S., Kesäniemi Y.A., Pasternack A., Staels B., et al. Peroxisome proliferator-activated receptor α gene variants influence progression of coronary atherosclerosis and risk of coronary artery disease. Circulation. 2002;105:1440–1445. doi: 10.1161/01.CIR.0000012145.80593.25. PubMed DOI

Jamshidi Y., Montgomery H.E., Hense H.-W., Myerson S.G., Torra I.P., Staels B., World M.J., Doering A., Erdmann J., Hengstenberg C., et al. Peroxisome proliferator–activated receptor α gene regulates left ventricular growth in response to exercise and hypertension. Circulation. 2002;105:950–955. doi: 10.1161/hc0802.104535. PubMed DOI

Barger P.M., Brandt J.M., Leone T.C., Weinheimer C.J., Kelly D.P. Deactivation of peroxisome proliferator–activated receptor-α during cardiac hypertrophic growth. J. Clin. Investig. 2000;105:1723–1730. doi: 10.1172/JCI9056. PubMed DOI PMC

Allard M., Schonekess B., Henning S., English D., Lopaschuk G.D. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am. J. Physiol. Heart Circ. Physiol. 1994;267:H742–H750. doi: 10.1152/ajpheart.1994.267.2.H742. PubMed DOI

Sack M.N., Rader T.A., Park S., Bastin J., McCune S.A., Kelly D.P. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation. 1996;94:2837–2842. doi: 10.1161/01.CIR.94.11.2837. PubMed DOI

Foucher C., Rattier S., Flavell D.M., Talmud P.J., Humphries S.E., Kastelein J.J., Ayyobi A., Pimstone S., Frohlich J., Ansquer J.C., et al. Response to micronized fenofibrate treatment is associated with the peroxisome–proliferator-activated receptors alpha G/C intron7 polymorphism in subjects with type 2 diabetes. Pharmacogenetics. 2004;14:823–829. doi: 10.1097/00008571-200412000-00005. PubMed DOI

Maciejewska A., Sawczuk M., Cieszczyk P. Variation in the PPARalpha gene in Polish rowers. J. Sci. Med. Sport. 2011;14:58–64. doi: 10.1016/j.jsams.2010.05.006. PubMed DOI

Eynon N., Meckel Y., Sagiv M., Yamin C., Amir R., Sagiv M., Goldhammer E., Duarte J.A., Oliveira J. Do PPARGC1A and PPARalpha polymorphisms influence sprint or endurance phenotypes? Scand. J. Med. Sci. Sports. 2010;20:e145–e150. doi: 10.1111/j.1600-0838.2009.00930.x. PubMed DOI

Ahmetov I.I., Mozhayskaya I.A., Flavell D.M., Astratenkova I.V., Komkova A.I., Lyubaeva E.V., Tarakin P.P., Shenkman B.S., Vdovina A.B., Netreba A.I., et al. PPARalpha gene variation and physical performance in Russian athletes. Eur. J. Appl. Physiol. 2006;97:103–108. doi: 10.1007/s00421-006-0154-4. PubMed DOI

Little J., Higgins J.P., Ioannidis J.P., Moher D., Gagnon F., Von Elm E., Khoury M.J., Cohen B., Davey-Smith G., Grimshaw J., et al. STrengthening the REporting of Genetic Association studies (STREGA)—An extension of the STROBE statement. Genet. Epidemiol. 2009;33:581–598. doi: 10.1002/gepi.20410. PubMed DOI

Hills A.P., Mokhtar N., Byrne N.M. Assessment of physical activity and energy expenditure: An overview of objective measures. Front. Nutr. 2014;16:5. doi: 10.3389/fnut.2014.00005. PubMed DOI PMC

Jarosz M. Normy żywienia dla Populacji Polski. Institut Żywności I Żywienia; Warszawa, Poland: 2017.

Zarebska A., Jastrzebski Z., Cieszczyk P., Leonska-Duniec A., Kotarska K., Kaczmarczyk M., Sawczuk M., Maciejewska-Karlowska A. The Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma gene modifies the association of physical activity and body mass changes in Polish women. PPAR Res. 2014;2014:1–7. doi: 10.1155/2014/373782. PubMed DOI PMC

Zarebska A., Jastrzebski Z., Kaczmarczyk M., Ficek K., Maciejewska-Karlowska A., Sawczuk M., Leońska-Duniec A., Krol P., Cieszczyk P., Zmijewski P., et al. The GSTP1 c. 313A> G polymorphism modulates the cardiorespiratory response to aerobic training. Biol. Sport. 2014;31:261–266. doi: 10.5604/20831862.1120932. PubMed DOI PMC

Zarębska A., Jastrzębski Z., Moska W., Leońska-Duniec A., Kaczmarczyk M., Sawczuk M., Maciejewska-Skrendo A., Zmijewski P., Ficek K., Trybek G., et al. The AGT gene M235T polymorphism and response of power-related variables to aerobic training. J. Sports Sci. Med. 2016;15:616–624. PubMed PMC

De Angelis M., Vinciguerra G., Gasbarri A., Pacitti C. Oxygen uptake, heart rate and blood lactate concentration during a normal training session of an aerobic dance class. Eur. J. Appl. Physiol. Occup. Physiol. 1998;78:121–127. doi: 10.1007/s004210050396. PubMed DOI

Leońska-Duniec A., Jastrzębski Z., Zarębska A., Maciejewska A., Ficek K., Cięszczyk P. Assessing effect of interaction between the FTO A/T polymorphism (rs9939609) and physical activity on obesity-related traits. J. Sport Health Sci. 2018;7:459–464. doi: 10.1016/j.jshs.2016.08.013. PubMed DOI PMC

Larson-Hall J. A Guide to Doing Statistics in Second Language Research Using SPSS. Ibérica. 2010;20:167–204.

Fikenzer K., Fikenzer S., Laufs U., Werner C. Effects of endurance training on serum lipids. Vasc. Pharm. 2018;101:9–20. doi: 10.1016/j.vph.2017.11.005. PubMed DOI

Aellen R., Hollmann W., Boutellier U. Effects of aerobic and anaerobic training on plasma lipoproteins. Int. J. Sports Med. 1993;14:396–400. doi: 10.1055/s-2007-1021198. PubMed DOI

Kodama S., Tanaka S., Saito K., Shu M., Sone Y., Onitake F., Suzuki E., Shimano H., Yamamoto S., Kondo K., et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: A meta-analysis. Arch. Intern. Med. 2007;167:999–1008. doi: 10.1001/archinte.167.10.999. PubMed DOI

Chen E.S., Mazzotti D.R., Furuya T.K., Cendoroglo M.S., Ramos L.R., Araujo L.Q., Burbano R.R., Smith Mde A. Association of PPARα gene polymorphisms and lipid serum levels in a Brazilian elderly population. Exp. Mol. Pathol. 2010;88:197–201. doi: 10.1016/j.yexmp.2009.10.001. PubMed DOI

Doney A.S., Fischer B., Lee S.P., Morris A.D., Leese G., Palmer C.N. Association of common variation in the PPARA gene with incident myocardial infarction in individuals with type 2 diabetes: A Go-DARTS study. Nucl. Recept. 2005;3:4. doi: 10.1186/1478-1336-3-4. PubMed DOI PMC

Cresci S., Jones P.G., Sucharov C.C., Marsh S., Lanfear D.E., Garsa A., Courtois M., Weinheimer C.J., Wu J., Province M.A., et al. Interaction between PPARA genotype and β-blocker treatment influences clinical outcomes following acute coronary syndromes. Pharmacogenomics. 2008;9:1403–1417. doi: 10.2217/14622416.9.10.1403. PubMed DOI PMC

Rudkowska I., Verreault M., Barbier O., Vohl M.-C. Differences in Transcriptional Activation by the Two Allelic (L162V Polymorphic) Variants of PPAR after Omega-3 Fatty Acids Treatment. Ppar. Res. 2009;2009:369602. doi: 10.1155/2009/369602. PubMed DOI PMC

Berneis K., Rizzo M. LDL size: Does it matter? Swiss. Med. Wkly. 2004;134:720–724. PubMed

Caslake M., Packard C., Gaw A., Murray E., Griffin B., Vallance B., Shepherd J. Fenofibrate and LDL metabolic heterogeneity in hypercholesterolemia. Arter. Thromb. 1993;13:702–711. doi: 10.1161/01.ATV.13.5.702. PubMed DOI

Lacquemant C., Lepretre F., Torra I.P., Manraj M., Charpentier G., Ruiz J., Staels B., Froguel P. Mutation screening of the PPARalpha, gene in type 2 diabetes associated with coronary heart disease. Diabetes Metab. 2000;26:393–402. PubMed

Tai E., Demissie S., Cupples L., Corella D., Wilson P., Schaefer E., Ordovas J.M. Association between the PPARA L162V polymorphism and plasma lipid levels: the Framingham Offspring Study. Arter. Thromb. Vasc. Biol. 2002;22:805–810. doi: 10.1161/01.ATV.0000012302.11991.42. PubMed DOI

Robitaille J., Brouillette C., Houde A., Lemieux S., Pérusse L., Tchernof A., Gaudet D., Vohl M.-C. Association between the PPARα-L162V polymorphism and components of the metabolic syndrome. J. Hum. Gen. 2004;49:482. PubMed

Sparsø T., Hussain M.S., Andersen G., Hainerova I., Borch-Johnsen K., Jørgensen T., Hansen T., Pedersen O. Relationships between the functional PPARα Leu162Val polymorphism and obesity, type 2 diabetes, dyslipidaemia, and related quantitative traits in studies of 5799 middle-aged white people. Mol. Genet. Metab. 2007;90:205–209. doi: 10.1016/j.ymgme.2006.10.007. PubMed DOI

AlSaleh A., Frost G.S., Griffin B.A., Lovegrove J.A., Jebb S.A., Sanders T.A., O’Dell S.D., RISCK Study Investigators PPARγ2 gene Pro12Ala and PPARα gene Leu162Val single nucleotide polymorphisms interact with dietary intake of fat in determination of plasma lipid concentrations. J. Nutr. Nutr. 2011;4:354–366. doi: 10.1159/000336362. PubMed DOI

Bouchard-Mercier A., Godin G., Lamarche B., Pérusse L., Vohl M.-C. Effects of peroxisome proliferator-activated receptors, dietary fat intakes and gene–diet interactions on peak particle diameters of low-density lipoproteins. J. Nutr. Nutr. 2011;4:36–48. doi: 10.1159/000324531. PubMed DOI

Egert S., Kratz M., Kannenberg F., Fobker M., Wahrburg U. Effects of high-fat and low-fat diets rich in monounsaturated fatty acids on serum lipids, LDL size and indices of lipid peroxidation in healthy non-obese men and women when consumed under controlled conditions. Eur. J. Nutr. 2011;50:71–79. doi: 10.1007/s00394-010-0116-9. PubMed DOI

Lamarche B., Lemieux I., Despres J. The small, dense LDL phenotype and the risk of coronary heart disease: Epidemiology, patho-physiology and therapeutic aspects. Diabetes Metab. 1999;25:199–212. PubMed

Berneis K.K., Krauss R.M. Metabolic origins and clinical significance of LDL heterogeneity. J. Lipid Res. 2002;43:1363–1379. doi: 10.1194/jlr.R200004-JLR200. PubMed DOI

Jakob T., Nordmann A.J., Schandelmaier S., Ferreira-González I., Briel M. Fibrates for primary prevention of cardiovascular disease events. Cochrane Database Syst. Rev. 2016;11:CD009753. doi: 10.1002/14651858.CD009753.pub2. PubMed DOI PMC

Stastny P., Lehnert M., De Ste Croix M., Petr M., Svoboda Z., Maixnerova E., Varekova R., Botek M., Petrek M., Kocourkova L., et al. Effect of COL5A1, GDF5, and PPARA Genes on a Movement Screen and Neuromuscular Performance in Adolescent Team Sport Athletes. J. Strength Cond. Res. 2019 doi: 10.1519/JSC.0000000000003142. PubMed DOI

Petr M., Stastny P., Pecha O., Šteffl M., Šeda O., Kohlíková E. PPARA intron polymorphism associated with power performance in 30-s anaerobic Wingate Test. PLoS ONE. 2014;9:e107171. doi: 10.1371/journal.pone.0107171. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...