The Polymorphisms of the Peroxisome-Proliferator Activated Receptors' Alfa Gene Modify the Aerobic Training Induced Changes of Cholesterol and Glucose
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UNCE/HUM/032
Univerzita Karlova v Praze
UM0-2012/07/B/NZ7/ 01155
Polish Ministry of Science and Higher Education
PubMed
31319591
PubMed Central
PMC6679124
DOI
10.3390/jcm8071043
PII: jcm8071043
Knihovny.cz E-zdroje
- Klíčová slova
- VO2max, aerobic training, cholesterol levels, genetic predisposition, glucose tolerance, human performance, lipid metabolism, mitochondria activity,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: PPARα is a transcriptional factor that controls the expression of genes involved in fatty acid metabolism, including fatty acid transport, uptake by the cells, intracellular binding, and activation, as well as catabolism (particularly mitochondrial fatty acid oxidation) or storage. PPARA gene polymorphisms may be crucial for maintaining lipid homeostasis and in this way, being responsible for developing specific training-induced physiological reactions. Therefore, we have decided to check if post-training changes of body mass measurements as well as chosen biochemical parameters are modulation by the PPARA genotypes. METHODS: We have examined the genotype and alleles' frequencies (described in PPARA rs1800206 and rs4253778 polymorphic sites) in 168 female participants engaged in a 12-week training program. Body composition and biochemical parameters were measured before and after the completion of a whole training program. RESULTS: Statistical analyses revealed that PPARA intron 7 rs4253778 CC genotype modulate training response by increasing low-density lipoproteins (LDL) and glucose concentration, while PPARA Leu162Val rs1800206 CG genotype polymorphism interacts in a decrease in high-density lipoproteins (HDL) concentration. CONCLUSIONS: Carriers of PPARA intron 7 rs4253778 CC genotype and Leu162Val rs1800206 CG genotype might have potential negative training-induced cholesterol and glucose changes after aerobic exercise.
Zobrazit více v PubMed
Desvergne B., Wahli W. Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocr. Rev. 1999;20:649–688. PubMed
Auboeuf D., Rieusset J., Fajas L., Vallier P., Frering V., Riou J.P., Staels B., Auwerx J., Laville M., Vidal H. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator–activated receptors and liver X receptor-α in humans: No alteration in adipose tissue of obese and NIDDM patients. Diabetes. 1997;46:1319–1327. PubMed
Mukherjee R., Jow L., Croston G.E., Paterniti J.R. Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARγ2 versus PPARγ1 and activation with retinoid X receptor agonists and antagonists. J. Biol. Chem. 1997;272:8071–8076. doi: 10.1074/jbc.272.12.8071. PubMed DOI
Palmer C.N., Hsu M.-H., Griffin K.J., Raucy J.L., Johnson E.F. Peroxisome proliferator activated receptor-α expression in human liver. Mol. Pharm. 1998;53:14–22. doi: 10.1124/mol.53.1.14. PubMed DOI
Willson T.M., Wahli W. Peroxisome proliferator-activated receptor agonists. Curr. Opin. Chem. Biol. 1997;1:235–241. doi: 10.1016/S1367-5931(97)80015-4. PubMed DOI
Dowell P., Peterson V.J., Zabriskie T.M., Leid M. Ligand-induced peroxisome proliferator-activated receptor α conformational change. J. Biol. Chem. 1997;272:2013–2020. doi: 10.1074/jbc.272.3.2013. PubMed DOI
Kliewer S.A., Sundseth S.S., Jones S.A., Brown P.J., Wisely G.B., Koble C.S., Devchand P., Wahli W., Willson T.M., Lenhard J.M., et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc. Natl. Acad. Sci. USA. 1997;94:4318–4323. doi: 10.1073/pnas.94.9.4318. PubMed DOI PMC
Brown P.J., Smith-Oliver T.A., Charifson P.S., Tomkinson N.C., Fivush A.M., Sternbach D.D., Wade L.E., Orband-Miller L., Parks D.J., Blanchard S.G., et al. Identification of peroxisome proliferator-activated receptor ligands from a biased chemical library. Chem. Biol. 1997;4:909–918. doi: 10.1016/S1074-5521(97)90299-4. PubMed DOI
Henke B.R., Blanchard S.G., Brackeen M.F., Brown K.K., Cobb J.E., Collins J.L., Harrington W.W., Jr., Hashim M.A., Hull-Ryde E.A., Kaldor I., et al. N-(2-benzoylphenyl)-L-tyrosine PPARγ agonists. 1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. J. Med. Chem. 1998;41:5020–5036. doi: 10.1021/jm9804127. PubMed DOI
Lehmann J.M., Moore L.B., Smith-Oliver T.A., Wilkison W.O., Willson T.M., Kliewer S.A. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ) J. Biol. Chem. 1995;270:12953–12956. doi: 10.1074/jbc.270.22.12953. PubMed DOI
Gearing K., Göttlicher M., Teboul M., Widmark E., Gustafsson J.-A. Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor. Proc. Natl. Acad. Sci. USA. 1993;90:1440–1444. doi: 10.1073/pnas.90.4.1440. PubMed DOI PMC
Keller H.R., Dreyer C., Medin J., Mahfoudi A., Ozato K., Wahli W. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc. Natl. Acad. Sci. USA. 1993;90:2160–2164. doi: 10.1073/pnas.90.6.2160. PubMed DOI PMC
Juge-Aubry C.E., Hammar E., Siegrist-Kaiser C., Pernin A., Takeshita A., Chin W.W., Burger A.G., Meier C.A. Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor α by phosphorylation of a ligand-independent trans-activating domain. J. Biol. Chem. 1999;274:10505–10510. doi: 10.1074/jbc.274.15.10505. PubMed DOI
Sher T., Yi H.F., McBride O.W., Gonzalez F.J. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry. 1993;32:5598–5604. doi: 10.1021/bi00072a015. PubMed DOI
Hsu M.-H., Palmer C.N., Song W., Griffin K.J., Johnson E.F. A carboxyl-terminal extension of the zinc finger domain contributes to the specificity and polarity of peroxisome proliferator-activated receptor DNA binding. J. Biol. Chem. 1998;273:27988–27997. doi: 10.1074/jbc.273.43.27988. PubMed DOI
Flavell D., Torra I.P., Jamshidi Y., Evans D., Diamond J., Elkeles R., Bujac S.R., Miller G., Talmud P.J., Staels B., et al. Variation in the PPARα gene is associated with altered function in vitro and plasma lipid concentrations in Type II diabetic subjects. Diabetologia. 2000;43:673–680. doi: 10.1007/s001250051357. PubMed DOI
Sapone A., Peters J.M., Sakai S., Tomita S., Papiha S.S., Dai R., Friedman F.K., Gonzalez F.J. The human peroxisome proliferator-activated receptor α gene: identification and functional characterization of two natural allelic variants. Pharm. Genom. 2000;10:321–333. doi: 10.1097/00008571-200006000-00006. PubMed DOI
Vohl M.-C., Lepage P., Gaudet D., Brewer C.G., Bétard C., Perron P., Houde G., Cellier C., Faith J.M., Després J.P., et al. Molecular scanning of the human PPARα gene: Association of the L162V mutation with hyperapobetalipoproteinemia. J. Lipid Res. 2000;41:945–952. PubMed
Elkeles R.S., Diamond J.R., Poulter C., Dhanjil S., Nicolaides A.N., Mahmood S., Richmond W., Mather H., Sharp P., Feher M.D., et al. Cardiovascular outcomes in type 2 diabetes: A double-blind placebo-controlled study of bezafibrate: The St. Mary’s, Ealing, Northwick Park Diabetes Cardiovascular Disease Prevention (SENDCAP) Study. Diabetes Care. 1998;21:641–648. doi: 10.2337/diacare.21.4.641. PubMed DOI
Andrulionytė L., Kuulasmaa T., Chiasson J.-L., Laakso M. Single Nucleotide Polymorphisms of the Peroxisome Proliferator–Activated Receptor-α Gene (PPARA) Influence the Conversion From Impaired Glucose Tolerance to Type 2 Diabetes: The STOP-NIDDM Trial. Diabetes. 2007;56:1181–1186. doi: 10.2337/db06-1110. PubMed DOI
Flavell D.M., Jamshidi Y., Hawe E., Pineda Torra I.S., Taskinen M.-R., Frick M.H., Nieminen M.S., Kesäniemi Y.A., Pasternack A., Staels B., et al. Peroxisome proliferator-activated receptor α gene variants influence progression of coronary atherosclerosis and risk of coronary artery disease. Circulation. 2002;105:1440–1445. doi: 10.1161/01.CIR.0000012145.80593.25. PubMed DOI
Jamshidi Y., Montgomery H.E., Hense H.-W., Myerson S.G., Torra I.P., Staels B., World M.J., Doering A., Erdmann J., Hengstenberg C., et al. Peroxisome proliferator–activated receptor α gene regulates left ventricular growth in response to exercise and hypertension. Circulation. 2002;105:950–955. doi: 10.1161/hc0802.104535. PubMed DOI
Barger P.M., Brandt J.M., Leone T.C., Weinheimer C.J., Kelly D.P. Deactivation of peroxisome proliferator–activated receptor-α during cardiac hypertrophic growth. J. Clin. Investig. 2000;105:1723–1730. doi: 10.1172/JCI9056. PubMed DOI PMC
Allard M., Schonekess B., Henning S., English D., Lopaschuk G.D. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am. J. Physiol. Heart Circ. Physiol. 1994;267:H742–H750. doi: 10.1152/ajpheart.1994.267.2.H742. PubMed DOI
Sack M.N., Rader T.A., Park S., Bastin J., McCune S.A., Kelly D.P. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation. 1996;94:2837–2842. doi: 10.1161/01.CIR.94.11.2837. PubMed DOI
Foucher C., Rattier S., Flavell D.M., Talmud P.J., Humphries S.E., Kastelein J.J., Ayyobi A., Pimstone S., Frohlich J., Ansquer J.C., et al. Response to micronized fenofibrate treatment is associated with the peroxisome–proliferator-activated receptors alpha G/C intron7 polymorphism in subjects with type 2 diabetes. Pharmacogenetics. 2004;14:823–829. doi: 10.1097/00008571-200412000-00005. PubMed DOI
Maciejewska A., Sawczuk M., Cieszczyk P. Variation in the PPARalpha gene in Polish rowers. J. Sci. Med. Sport. 2011;14:58–64. doi: 10.1016/j.jsams.2010.05.006. PubMed DOI
Eynon N., Meckel Y., Sagiv M., Yamin C., Amir R., Sagiv M., Goldhammer E., Duarte J.A., Oliveira J. Do PPARGC1A and PPARalpha polymorphisms influence sprint or endurance phenotypes? Scand. J. Med. Sci. Sports. 2010;20:e145–e150. doi: 10.1111/j.1600-0838.2009.00930.x. PubMed DOI
Ahmetov I.I., Mozhayskaya I.A., Flavell D.M., Astratenkova I.V., Komkova A.I., Lyubaeva E.V., Tarakin P.P., Shenkman B.S., Vdovina A.B., Netreba A.I., et al. PPARalpha gene variation and physical performance in Russian athletes. Eur. J. Appl. Physiol. 2006;97:103–108. doi: 10.1007/s00421-006-0154-4. PubMed DOI
Little J., Higgins J.P., Ioannidis J.P., Moher D., Gagnon F., Von Elm E., Khoury M.J., Cohen B., Davey-Smith G., Grimshaw J., et al. STrengthening the REporting of Genetic Association studies (STREGA)—An extension of the STROBE statement. Genet. Epidemiol. 2009;33:581–598. doi: 10.1002/gepi.20410. PubMed DOI
Hills A.P., Mokhtar N., Byrne N.M. Assessment of physical activity and energy expenditure: An overview of objective measures. Front. Nutr. 2014;16:5. doi: 10.3389/fnut.2014.00005. PubMed DOI PMC
Jarosz M. Normy żywienia dla Populacji Polski. Institut Żywności I Żywienia; Warszawa, Poland: 2017.
Zarebska A., Jastrzebski Z., Cieszczyk P., Leonska-Duniec A., Kotarska K., Kaczmarczyk M., Sawczuk M., Maciejewska-Karlowska A. The Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma gene modifies the association of physical activity and body mass changes in Polish women. PPAR Res. 2014;2014:1–7. doi: 10.1155/2014/373782. PubMed DOI PMC
Zarebska A., Jastrzebski Z., Kaczmarczyk M., Ficek K., Maciejewska-Karlowska A., Sawczuk M., Leońska-Duniec A., Krol P., Cieszczyk P., Zmijewski P., et al. The GSTP1 c. 313A> G polymorphism modulates the cardiorespiratory response to aerobic training. Biol. Sport. 2014;31:261–266. doi: 10.5604/20831862.1120932. PubMed DOI PMC
Zarębska A., Jastrzębski Z., Moska W., Leońska-Duniec A., Kaczmarczyk M., Sawczuk M., Maciejewska-Skrendo A., Zmijewski P., Ficek K., Trybek G., et al. The AGT gene M235T polymorphism and response of power-related variables to aerobic training. J. Sports Sci. Med. 2016;15:616–624. PubMed PMC
De Angelis M., Vinciguerra G., Gasbarri A., Pacitti C. Oxygen uptake, heart rate and blood lactate concentration during a normal training session of an aerobic dance class. Eur. J. Appl. Physiol. Occup. Physiol. 1998;78:121–127. doi: 10.1007/s004210050396. PubMed DOI
Leońska-Duniec A., Jastrzębski Z., Zarębska A., Maciejewska A., Ficek K., Cięszczyk P. Assessing effect of interaction between the FTO A/T polymorphism (rs9939609) and physical activity on obesity-related traits. J. Sport Health Sci. 2018;7:459–464. doi: 10.1016/j.jshs.2016.08.013. PubMed DOI PMC
Larson-Hall J. A Guide to Doing Statistics in Second Language Research Using SPSS. Ibérica. 2010;20:167–204.
Fikenzer K., Fikenzer S., Laufs U., Werner C. Effects of endurance training on serum lipids. Vasc. Pharm. 2018;101:9–20. doi: 10.1016/j.vph.2017.11.005. PubMed DOI
Aellen R., Hollmann W., Boutellier U. Effects of aerobic and anaerobic training on plasma lipoproteins. Int. J. Sports Med. 1993;14:396–400. doi: 10.1055/s-2007-1021198. PubMed DOI
Kodama S., Tanaka S., Saito K., Shu M., Sone Y., Onitake F., Suzuki E., Shimano H., Yamamoto S., Kondo K., et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: A meta-analysis. Arch. Intern. Med. 2007;167:999–1008. doi: 10.1001/archinte.167.10.999. PubMed DOI
Chen E.S., Mazzotti D.R., Furuya T.K., Cendoroglo M.S., Ramos L.R., Araujo L.Q., Burbano R.R., Smith Mde A. Association of PPARα gene polymorphisms and lipid serum levels in a Brazilian elderly population. Exp. Mol. Pathol. 2010;88:197–201. doi: 10.1016/j.yexmp.2009.10.001. PubMed DOI
Doney A.S., Fischer B., Lee S.P., Morris A.D., Leese G., Palmer C.N. Association of common variation in the PPARA gene with incident myocardial infarction in individuals with type 2 diabetes: A Go-DARTS study. Nucl. Recept. 2005;3:4. doi: 10.1186/1478-1336-3-4. PubMed DOI PMC
Cresci S., Jones P.G., Sucharov C.C., Marsh S., Lanfear D.E., Garsa A., Courtois M., Weinheimer C.J., Wu J., Province M.A., et al. Interaction between PPARA genotype and β-blocker treatment influences clinical outcomes following acute coronary syndromes. Pharmacogenomics. 2008;9:1403–1417. doi: 10.2217/14622416.9.10.1403. PubMed DOI PMC
Rudkowska I., Verreault M., Barbier O., Vohl M.-C. Differences in Transcriptional Activation by the Two Allelic (L162V Polymorphic) Variants of PPAR after Omega-3 Fatty Acids Treatment. Ppar. Res. 2009;2009:369602. doi: 10.1155/2009/369602. PubMed DOI PMC
Berneis K., Rizzo M. LDL size: Does it matter? Swiss. Med. Wkly. 2004;134:720–724. PubMed
Caslake M., Packard C., Gaw A., Murray E., Griffin B., Vallance B., Shepherd J. Fenofibrate and LDL metabolic heterogeneity in hypercholesterolemia. Arter. Thromb. 1993;13:702–711. doi: 10.1161/01.ATV.13.5.702. PubMed DOI
Lacquemant C., Lepretre F., Torra I.P., Manraj M., Charpentier G., Ruiz J., Staels B., Froguel P. Mutation screening of the PPARalpha, gene in type 2 diabetes associated with coronary heart disease. Diabetes Metab. 2000;26:393–402. PubMed
Tai E., Demissie S., Cupples L., Corella D., Wilson P., Schaefer E., Ordovas J.M. Association between the PPARA L162V polymorphism and plasma lipid levels: the Framingham Offspring Study. Arter. Thromb. Vasc. Biol. 2002;22:805–810. doi: 10.1161/01.ATV.0000012302.11991.42. PubMed DOI
Robitaille J., Brouillette C., Houde A., Lemieux S., Pérusse L., Tchernof A., Gaudet D., Vohl M.-C. Association between the PPARα-L162V polymorphism and components of the metabolic syndrome. J. Hum. Gen. 2004;49:482. PubMed
Sparsø T., Hussain M.S., Andersen G., Hainerova I., Borch-Johnsen K., Jørgensen T., Hansen T., Pedersen O. Relationships between the functional PPARα Leu162Val polymorphism and obesity, type 2 diabetes, dyslipidaemia, and related quantitative traits in studies of 5799 middle-aged white people. Mol. Genet. Metab. 2007;90:205–209. doi: 10.1016/j.ymgme.2006.10.007. PubMed DOI
AlSaleh A., Frost G.S., Griffin B.A., Lovegrove J.A., Jebb S.A., Sanders T.A., O’Dell S.D., RISCK Study Investigators PPARγ2 gene Pro12Ala and PPARα gene Leu162Val single nucleotide polymorphisms interact with dietary intake of fat in determination of plasma lipid concentrations. J. Nutr. Nutr. 2011;4:354–366. doi: 10.1159/000336362. PubMed DOI
Bouchard-Mercier A., Godin G., Lamarche B., Pérusse L., Vohl M.-C. Effects of peroxisome proliferator-activated receptors, dietary fat intakes and gene–diet interactions on peak particle diameters of low-density lipoproteins. J. Nutr. Nutr. 2011;4:36–48. doi: 10.1159/000324531. PubMed DOI
Egert S., Kratz M., Kannenberg F., Fobker M., Wahrburg U. Effects of high-fat and low-fat diets rich in monounsaturated fatty acids on serum lipids, LDL size and indices of lipid peroxidation in healthy non-obese men and women when consumed under controlled conditions. Eur. J. Nutr. 2011;50:71–79. doi: 10.1007/s00394-010-0116-9. PubMed DOI
Lamarche B., Lemieux I., Despres J. The small, dense LDL phenotype and the risk of coronary heart disease: Epidemiology, patho-physiology and therapeutic aspects. Diabetes Metab. 1999;25:199–212. PubMed
Berneis K.K., Krauss R.M. Metabolic origins and clinical significance of LDL heterogeneity. J. Lipid Res. 2002;43:1363–1379. doi: 10.1194/jlr.R200004-JLR200. PubMed DOI
Jakob T., Nordmann A.J., Schandelmaier S., Ferreira-González I., Briel M. Fibrates for primary prevention of cardiovascular disease events. Cochrane Database Syst. Rev. 2016;11:CD009753. doi: 10.1002/14651858.CD009753.pub2. PubMed DOI PMC
Stastny P., Lehnert M., De Ste Croix M., Petr M., Svoboda Z., Maixnerova E., Varekova R., Botek M., Petrek M., Kocourkova L., et al. Effect of COL5A1, GDF5, and PPARA Genes on a Movement Screen and Neuromuscular Performance in Adolescent Team Sport Athletes. J. Strength Cond. Res. 2019 doi: 10.1519/JSC.0000000000003142. PubMed DOI
Petr M., Stastny P., Pecha O., Šteffl M., Šeda O., Kohlíková E. PPARA intron polymorphism associated with power performance in 30-s anaerobic Wingate Test. PLoS ONE. 2014;9:e107171. doi: 10.1371/journal.pone.0107171. PubMed DOI PMC