Changes of Anaerobic Power and Lactate Concentration following Intense Glycolytic Efforts in Elite and Sub-Elite 400-meter Sprinters
Status PubMed-not-MEDLINE Jazyk angličtina Země Polsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38689580
PubMed Central
PMC11057624
DOI
10.5114/jhk/186074
PII: 186074
Knihovny.cz E-zdroje
- Klíčová slova
- blood lactate, competition, fatigue, sprinting,
- Publikační typ
- časopisecké články MeSH
400-m races are based on anaerobic energy metabolism, they induce significant muscle fatigue, muscle fiber damage, and high blood lactate (LA) concentration. Despite extensive research on sprint training, our understanding of the training process that leads to world-class sprint performance is rather limited. This study aimed to determine differences in LA concentration and anaerobic power using jumping tests after an intense glycolytic effort in a group of elite and sub-elite 400-m runners. One hundred thirty male runners were divided into two groups: elite (n = 66, body mass = 73.4 ± 7.8 kg, body height = 182.1 ± 6.2 cm, age = 20.8 ± 4.0 y) running the 400-m dash below 50 s and sub-elite (n = 64, body mass = 72.0 ± 7.1 kg, body height = 182.1 ± 5.2 cm, age = 20.8 ± 4.0 y) with a 400-m personal best above 50 s. The power of the countermovement and the sequential squat jumps was measured in two sets after a warm-up, followed by two intermittent 30-s Wingate tests. LA concentration was measured eight times. It was observed that elite athletes achieved significantly higher power in both types of jumps. The maximum post-exercise LA concentration was significantly lower in the sub-elite group after the 3rd, the 6th, the 9th, and the 20th min after the cessation of two Wingate tests (p < 0.001). The rate of LA accumulation after exercise and the rate of LA utilization did not differ between the groups. It can be concluded that elite and non-elite runners differ in higher LA production but not in LA utilization. Anaerobic power and LA concentration seem to differentiate between 400 elite and sub-elite performance.
Department of Laboratory Diagnostics Military Institute of Aviation Medicine Warsaw Poland
Faculty of Physical Education and Sport Charles University Prague Czech Republic
Faculty of Physical Education Gdansk University of Physical Education and Sport Gdansk Poland
Zobrazit více v PubMed
Arcelli, E., Marina, M., Cimadoro, G., & Alberti, G. (2008). The aerobic mechanism in the 400 metres. New Studies in Athletics, 23(2), 15–23.
Bishop, D., Bonetti, D., & Dawson, B. (2002). The influence of pacing strategy on VO2 and supramaximal kayak performance. Medicine and Science in Sports and Exercise, 34(6), 1041–1047. 10.1097/00005768-200206000-00022 PubMed DOI
Bret, C., Lacour, J. R., Bourdin, M., Locatelli, E., De Angelis, M., Faina, M., Rahmani, A., & Messonnier, L. (2013). Differences in lactate exchange and removal abilities between high-level African and Caucasian 400-m track runners. European Journal of Applied Physiology, 113(6), 1489–1498. 10.1007/s00421-012-2573-8 PubMed DOI
Chatel, B., Bret, C., Edouard, P., Oullion, R., Freund, H., & Messonnier, L. A. (2016). Lactate recovery kinetics in response to high-intensity exercises. European Journal of Applied Physiology, 116(8), 1455–1465. 10.1007/s00421-016-3420-0 PubMed DOI
Chavda, S., Bromley, T., Jarvis, P., Williams, S., Bishop, C., Turner, A. N., Lake, J. P., & Mundy, P. D. (2018). Force-time characteristics of the countermovement jump: Analyzing the curve in excel. Strength and Conditioning Journal, 40(2), 67–77. 10.1519/SSC.0000000000000353 DOI
Eynon, N., Hanson, E. D., Lucia, A., Houweling, P. J., Garton, F., North, K. N., & Bishop, D. J. (2013). Genes for elite power and sprint performance: ACTN3 leads the way. Sports Medicine, 43(9), 803–817. 10.1007/s40279-013-0059-4 PubMed DOI
Goodwin, M. L., Harris, J. E., Hernández, A., & Gladden, L. B. (2007). Blood lactate measurements and analysis during exercise: A guide for clinicians. Journal of Diabetes Science and Technology, 1(4), 558–569. 10.1177/193229680700100414 PubMed DOI PMC
Hanon, C., Bernard, O., Rabate, M., & Claire, T. (2012). Effect of two different long-sprint training regimens on sprint performance and associated metabolic responses. Journal of Strength and Conditioning Research, 26(6), 1551–1557. 10.1519/JSC.0b013e318231a6b5 PubMed DOI
Hanon, C., & Gajer, B. (2009). Velocity and stride parameters of world-class 400-meter athletes compared with less experienced runners. Journal of Strength and Conditioning Research, 23(2), 524–531. 10.1519/JSC.0b013e318194e071 PubMed DOI
Hanon, C., Rabate, M., & Thomas, C. (2011). Effect of expertise on postmaximal long sprint blood metabolite responses. Journal of Strength and Conditioning Research, 25(9), 2503–2509. 10.1519/JSC.0b013e3182001807 PubMed DOI
Hanon, C., & Thomas, C. (2011). Effects of optimal pacing strategies for 400-, 800-, and 1500-m races on the VO2 response. Journal of Sports Sciences, 29(9), 905–912. 10.1080/02640414.2011.562232 PubMed DOI
Harmer, A. R., McKenna, M. J., Sutton, J. R., Snow, R. J., Ruell, P. A., Booth, J., Thompson, M. W., Mackay, N. A., Stathis, C. G., Crameri, R. M., Carey, M. F., & Eager, D. M. (2000). Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans. Journal of Applied Physiology, 89(5), 1793–1803. 10.1152/jappl.2000.89.5.1793 PubMed DOI
Haugen, T., Seiler, S., Sandbakk, Ø., & Tønnessen, E. (2019). The Training and Development of Elite Sprint Performance: an Integration of Scientific and Best Practice Literature. Sports Medicine–Open, 5(1), 44. 10.1186/s40798-019-0221-0 PubMed DOI PMC
Hill, D. W. (1999). Energy system contributions in middle-distance running events. Journal of Sports Sciences, 17(6), 77–483. 10.1080/026404199365786 PubMed DOI
Hirvonen, J., Nummela, A., Rusko, H., Rehunen, S., & Härkönen, M. (1992). Fatigue and changes of ATP, creatine phosphate, and lactate during the 400-m sprint. Canadian Journal of Sport Sciences, 17(2), 141–144 PubMed
Iskra, J., Matusiński, A., Otsuka, M., & Guex, K. J. (2021). Pacing Strategy in Men’s 400 m Hurdles Accounting for Temporal and Spatial Characteristics of Elite Athletes. Journal of Human Kinetics, 79(1), 175–186). 10.2478/hukin-2021-0059 PubMed DOI PMC
Jones, A. M., & Whipp, B. J. (2002). Bioenergetic constraints on tactical decision making in middle distance running. British Journal of Sports Medicine, 36(2), 102–104. 10.1136/bjsm.36.2.102 PubMed DOI PMC
Lopez, E. I. D., Smoliga, J. M., & Zavorsky, G. S. (2014). The effect of passive versus active recovery on power output over six repeated Wingate sprints. Research Quarterly for Exercise and Sport, 85(4), 519–526. 10.1080/02701367.2014.961055 PubMed DOI
Maemura, H., Suzuki, Y., Mukai, N., &Takamatsu, K. (2004). Factors influencing excess CO2 output during and after short duration-intensive exercise: Focusing on skeletal muscle characteristics. International Journal of Sport and Health Science, 2, 129–135
Maciejewska-Skrendo, A., Buryta, M., Czarny, W., Król, P., Spieszny, M., Stastny, P., Petr, M., Safranow, K., & Sawczuk, M. (2019). The Polymorphisms of the Peroxisome-Proliferator Activated Receptors’ Alfa Gene Modify the Aerobic Training Induced Changes of Cholesterol and Glucose. Journal of Clinical Medicine, 8(10), 1043. 10.3390/jcm8071043 PubMed DOI PMC
McMahon, J. J., Suchomel, T. J., Lake, J. P., & Comfort, P. (2018). Understanding the key phases of the countermovement jump force-time curve. Strength and Conditioning Journal, 40(4), 96–106. 10.1519/SSC.0000000000000375 DOI
Metcalfe, R. S., Babraj, J. A., Fawkner, S. G., & Vollaard, N. B. J. (2012). Towards the minimal amount of exercise for improving metabolic health: Beneficial effects of reduced-exertion high-intensity interval training. European Journal of Applied Physiology, 112(7), 2767–2775. 10.1007/s00421-011-2254-z PubMed DOI
Nummela, A., & Rusko, H. (1995). Time course of anaerobic and aerobic energy expenditure during short-term exhaustive running in athletes. International Journal of Sports Medicine, 16(8), 522–527. 10.1055/s-2007-973048 PubMed DOI
Nummela, A., Vuorimaa, T., & Rusko, H. (1992). Changes in force production, blood lactate and emg activity in the 400-m sprint. Journal of Sports Sciences, 10(3), 217–228. 10.1080/02640419208729920 PubMed DOI
Okudaira, M., Kuki, S., Yoshida, T., Fukuda, D. H., & Tanigawa, S. (2019). Load Characteristics of Sprint Interval Training According to 400m Running Performance: Competitive Level Comparison. International Journal of Sport and Health Science, 17, 148–154. 10.5432/ijshs.201833 DOI
Ohkuwa, T. & Miyamura, M. (1984). Peak Blood Lactate after 400 m Sprinting in Sprinters and Long-Distance Runners. Japanese Journal of Physiology, 34(3), 553–556. 10.2170/jjphysiol.34.553 PubMed DOI
Rago, V., Krustrup, P., & Mohr, M. (2022). Performance and Submaximal Adaptations to Additional Speed-Endurance Training vs. Continuous Moderate-Intensity Aerobic Training in Male Endurance Athletes. Journal of Human Kinetics, 83(1), 277–285. 10.2478/hukin-2022-0060 PubMed DOI PMC
Ross, A., & Leveritt, M. (2001). Long-term metabolic and skeletal muscle adaptations to short-sprint training: Implications for sprint training and tapering. Sports Medicine 31(15), 1063–1082. 10.2165/00007256-200131150-00003 PubMed DOI
Siembida, P., Zawadka, M., & Gawda, P. (2021). The relationship between vertical jump performance during different training periods and results of 200m-sprint. Balt J Health Phys Activ, 13(3), 1-9. 10.29359/BJHPA.13.3.01 DOI
Sumida, K. D., Urdiales, J. H., & Donovan, C. M. (1993). Enhanced gluconeogenesis from lactate in perfused livers after endurance training. Journal of Applied Physiology, 74(2), 782–787. 10.1152/jappl.1993.74.2.782 PubMed DOI
Tomschi, F., Bizjak, D. A., Predel, H. G., Bloch, W., & Grau, M. (2018). Lactate distribution in red blood cells and plasma after a high intensity running exercise in aerobically trained and untrained subjects. Journal of Human Sport and Exercise, 13(2), 384–392. 10.14198/jhse.2018.132.10 DOI
van Schenau, G. J. I., de Koning, J. J., & de Groot, G. (1994). Optimisation of Sprinting Performance in Running, Cycling and Speed Skating. Sports Medicine: An International Journal of Applied Medicine and Science in Sport and Exercise 17(4), 259–275. 10.2165/00007256-199417040-00006 PubMed DOI
Weyand, P. G., Cureton, K. J., Conley, D. S., Sloniger, M. A., & Liu, Y. L. (1994). Peak oxygen deficit predicts sprint and middle-distance track performance. Medicine and Science in Sports and Exercise, 26(9), 1174–1180. 10.1249/00005768-199409000-00016 PubMed DOI
Willis, R., Burkett, B., & Sayers, M. (2012). 400 metre race pace strategies: How your 200 metre personal best influences performance. Journal of Fitness Research, 1(1), 40–49.
Yang, R., Shen, X., Wang, Y., Voisin, S., Cai, G., Fu, Y., Xu, W., Eynon, N., Bishop, D. J., & Yan, X. (2017). ACTN3 R577X Gene Variant Is Associated with Muscle-Related Phenotypes in Elite Chinese Sprint/Power Athletes. Journal of Strength and Conditioning Research, 31(4), 1107–1115. 10.1519/JSC.0000000000001558 PubMed DOI