Behavior of Embedded Cation-Exchange Particles in a DC Electric Field

. 2019 Jul 22 ; 20 (14) : . [epub] 20190722

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31336637

Grantová podpora
18-13491S Grantová Agentura České Republiky
CENTEM PLUS (LO1402) Ministerstvo Školství, Mládeže a Tělovýchovy

Electrodialysis and electrodeionization are separation processes whose performance depends on the quality and properties of ion-exchange membranes. One of the features that largely affects these properties is heterogeneity of the membranes both on the macroscopic and microscopic level. Macroscopic heterogeneity is an intrinsic property of heterogeneous ion-exchange membranes. In these membranes, the functional ion-exchange component is dispersed in a non-conductive binder. The functional component is finely ground ion-exchange resin particles. The understanding of the effect of structure on the heterogeneous membrane properties and behavior is thus of utmost importance since it does not only affect the actual performance but also the cost and therefore competitiveness of the aforementioned separation processes. Here we study the electrokinetic behavior of cation-exchange resin particle systems with well-defined geometrical structure. This approach can be understood as a bottom up approach regarding the membrane preparation. We prepare a structured cation-exchange membrane by using its fundamental component, which is the ion exchange resin. We then perform an experimental study with four different experimental systems in which the number of used cation-exchange particles changes from 1 to 4. These systems are studied by means of basic electrochemical characterization measurements, such as measurement of current-voltage curves and direct optical observation of phenomena that occur at the interface between the ion-exchange system and the adjacent electrolyte. Our work aims at better understanding of the relation between the structure and the membrane properties and of how structure affects electrokinetic behavior of these systems.

Zobrazit více v PubMed

Strathmann H. Electrodialysis, a mature technology with a multitude of new applications. Desalination. 2010;264:268–288. doi: 10.1016/j.desal.2010.04.069. DOI

Alvarado L., Chen A.C. Electrodeionization: Principles, strategies and applications. Electrochim. Acta. 2014;132:583–597. doi: 10.1016/j.electacta.2014.03.165. DOI

Strathmann H., Grabowski A., Eigenberger G. Ion-exchange membranes in the chemical process industry. Ind Eng Chem. Res. 2013;52:10364–10379. doi: 10.1021/ie4002102. DOI

Slouka Z., Senapati S., Chang H.C. Microfluidic systems with ion-selective membranes. Annu. Rev. Anal. Chem. 2014;7:317–335. doi: 10.1146/annurev-anchem-071213-020155. PubMed DOI

Luo T., Abdu S., Wessling M. Selectivity of ion exchange membranes: A review. J. Membr. Sci. 2018;555:429–454. doi: 10.1016/j.memsci.2018.03.051. DOI

Yaroslavtsev A.B., Nikonenko V.V., Zabolotsky V.I. Ion transfer in membrane and ion exchange materials. Usp Khim. 2003;72:438–470. doi: 10.1070/RC2003v072n05ABEH000797. DOI

Nagarale R.K., Gohil G.S., Shahi V.K. Recent developments on ion-exchange membranes and electro-membrane processes. Adv Colloid. Interfac. 2006;119:97–130. doi: 10.1016/j.cis.2005.09.005. PubMed DOI

Vobecka L., Svoboda M., Benes J., Bellon T., Slouka Z. Heterogeneity of heterogeneous ion-exchange membranes investigated by chronopotentiometry and x-ray computed microtomography. J. Membr. Sci. 2018;559:127–137. doi: 10.1016/j.memsci.2018.04.049. DOI

Svoboda M., Benes J., Vobecka L., Slouka Z. Swelling induced structural changes of a heterogeneous cation-exchange membrane analyzed by micro-computed tomography. J. Membr. Sci. 2017;525:195–201. doi: 10.1016/j.memsci.2016.10.046. DOI

Marti-Calatayud M.C., Buzzi D.C., Garcia-Gabaldon M., Bernardes A.M., Tenorio J.A.S., Perez-Herranz V. Ion transport through homogeneous and heterogeneous ion-exchange membranes in single salt and multicomponent electrolyte solutions. J. Membr. Sci. 2014;466:45–57. doi: 10.1016/j.memsci.2014.04.033. DOI

Krol J.J., Wessling M., Strathmann H. Concentration polarization with monopolar ion exchange membranes: Current-voltage curves and water dissociation. J. Membr. Sci. 1999;162:145–154. doi: 10.1016/S0376-7388(99)00133-7. DOI

Svoboda M., Slouka Z., Schrott W., Snita D. Cation exchange membrane integrated into a microfluidic device. Microelectron Eng. 2009;86:1371–1374. doi: 10.1016/j.mee.2009.01.019. DOI

Maletzki F., Rosler H.W., Staude E. Ion transfer across electrodialysis membranes in the overlimiting current range - stationary voltage current characteristics and current noise power spectra under different conditions of free-convection. J. Membr. Sci. 1992;71:105–115. doi: 10.1016/0376-7388(92)85010-G. DOI

Belloň T., Polezhaev P., Vobecká L., Svoboda M., Slouka Z. Experimental observation of phenomena developing on ion-exchange systems during current-voltage curve measurement. J. Membr. Sci. 2019;572:607–618. doi: 10.1016/j.memsci.2018.11.037. DOI

Tanaka Y. Concentration polarization in ion-exchange membrane electrodialysis. J. Membr. Sci. 1991;57:217–235. doi: 10.1016/S0376-7388(00)80680-8. DOI

Tanaka Y. Concentration polarization in ion-exchange membrane electrodialysis - the events arising in a flowing solution in a desalting cell. J. Membr. Sci. 2003;216:149–164. doi: 10.1016/S0376-7388(03)00067-X. DOI

Tanaka Y. Concentration polarization in ion-exchange membrane electrodialysis - the events arising in an unforced flowing solution in a desalting cell. J. Membr. Sci. 2004;244:1–16. doi: 10.1016/S0376-7388(04)00106-1. DOI

Rosler H.W., Maletzki F., Staude E. Ion transfer across electrodialysis membranes in the overlimiting current range - chronopotentiometric studies. J. Membr. Sci. 1992;72:171–179. doi: 10.1016/0376-7388(92)80197-R. DOI

Dydek E.V., Zaltzman B., Rubinstein I., Deng D.S., Mani A., Bazant M.Z. Overlimiting current in a microchannel. Phys. Rev. Lett. 2011;107:118301. doi: 10.1103/PhysRevLett.107.118301. PubMed DOI

Nikonenko V.V., Kovalenko A.V., Urtenov M.K., Pismenskaya N.D., Han J., Sistat P., Pourcelly G. Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination. 2014;342:85–106. doi: 10.1016/j.desal.2014.01.008. DOI

Balster J., Yildirim M.H., Stamatialis D.F., Ibanez R., Lammertink R.G.H., Jordan V., Wessling M. Morphology and microtopology of cation-exchange polymers and the origin of the overlimiting current. J. Phys. Chem. B. 2007;111:2152–2165. doi: 10.1021/jp068474t. PubMed DOI

Nikonenko V.V., Mareev S.A., Pis’menskaya N.D., Uzdenova A.M., Kovalenko A.V., Urtenov M.K., Pourcelly G. Effect of electroconvection and its use in intensifying the mass transfer in electrodialysis (review) Russ. J. Electrochem. 2017;53:1122–1144. doi: 10.1134/S1023193517090099. DOI

Zabolotskii V.I., Nikonenko V.V., Urtenov M.K., Lebedev K.A., Bugakov V.V. Electroconvection in systems with heterogeneous ion-exchange membranes. Russ. J. Electrochem. 2012;48:692–703. doi: 10.1134/S102319351206016X. DOI

Belova E.I., Lopatkova G.Y., Pismenskaya N.D., Nikonenko V.V., Larchet C., Pourcelly G. Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer. J. Phys. Chem. B. 2006;110:13458–13469. doi: 10.1021/jp062433f. PubMed DOI

Simons R. Water splitting in ion-exchange membranes. Electrochim. Acta. 1985;30:275–282. doi: 10.1016/0013-4686(85)80184-5. DOI

Belova E., Lopatkova G., Pismenskaya N., Nikonenko V., Larchet C. Role of water splitting in development in ion-exchange membrane of electroconvection systems. Desalination. 2006;199:59–61. doi: 10.1016/j.desal.2006.03.142. DOI

Slouka Z., Senapati S., Yan Y., Chang H.C. Charge inversion, water splitting, and vortex suppression due to DNA sorption on ion-selective membranes and their ion-current signatures. Langmuir. 2013;29:8275–8283. doi: 10.1021/la4007179. PubMed DOI

Sablani S.S., Goosen M.F.A., Al-Belushi R., Wilf M. Concentration polarization in ultrafiltration and reverse osmosis: A critical review. Desalination. 2001;141:269–289. doi: 10.1016/S0011-9164(01)85005-0. DOI

Roghmans F., Evdochenko E., Stockmeier F., Schneider S., Smailji A., Tiwari R., Mikosch A., Karatay E., Kuhne A., Walther A., et al. 2D patterned ion-exchange membranes induce electroconvection. Adv. Mater. Interfaces. 2019;6:1801309. doi: 10.1002/admi.201801309. DOI

Davidson S.M., Wessling M., Mani A. On the dynamical regimes of pattern-accelerated electroconvection. Sci. Rep. 2016;6:22505. doi: 10.1038/srep22505. PubMed DOI PMC

Vasil’eva V.I., Akberova E.M., Zabolotskii V.I. Electroconvection in systems with heterogeneous ion-exchange membranes after thermal modification. Russ. J. Electrochem. 2017;53:398–410. doi: 10.1134/S1023193517040127. DOI

Butylskii D.Y., Mareev S.A., Pismenskaya N.D., Apel P.Y., Polezhaeva O.A., Nikonenko V.V. Phenomenon of two transition times in chronopotentiometry of electrically inhomogeneous ion exchange membranes. Electrochim. Acta. 2018;273:289–299. doi: 10.1016/j.electacta.2018.04.026. DOI

Green Y., Park S., Yossifon G. Bridging the gap between an isolated nanochannel and a communicating multipore heterogeneous membrane. Phys. Rev. E. 2015;91:011002. doi: 10.1103/PhysRevE.91.011002. PubMed DOI

Mareev S.A., Nebavskiy A.V., Nichka V.S., Urtenov M.K., Nikonenko V.V. The nature of two transition times on chronopotentiograms of heterogeneous ion exchange membranes: 2d modelling. J. Membr. Sci. 2019;575:179–190. doi: 10.1016/j.memsci.2018.12.087. DOI

Nikonenko V., Nebavsky A., Mareev S., Kovalenko A., Urtenov M., Pourcelly G. Modelling of ion transport in electromembrane systems: Impacts of membrane bulk and surface heterogeneity. Appl. Sci. 2019;9:25. doi: 10.3390/app9010025. DOI

Belloň T., Polezhaev P., Vobecká T., Slouka Z. Fouling of a heterogeneous anion-exchange membrane and single anion-exchange resin particle by ssdna manifests differently. J. Membr. Sci. 2019;572:619–631. doi: 10.1016/j.memsci.2018.11.034. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...