Electric Potential Profiles in a Model Single-Path Electrodialysis Unit

. 2022 Nov 12 ; 12 (11) : . [epub] 20221112

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36422128

Grantová podpora
20-21263S Czech Science Foundation

Electrodialysis is an important electromembrane separation process anticipated to play a significant role in developing future technologies. It produces ion-depleted and ion-concentrated product streams, intrinsically suggesting the formation of spatial gradients of relevant quantities. These quantities affect local conditions in an electrodialysis unit. To investigate the spatial distribution of electric potentials, we constructed a model electrodialysis system with a single diluate channel that included ports for inserting reference electrodes measuring potential profiles. We validated our system and measurement methods in a series of control experiments under a solution flow rate of 250 µL/min and current densities between 10 and 52 A/m2. The collected data showed that the electric potential in the diluate channel did not change in the vertical direction (direction of gravity force), and only minimally varied in the diluate channel center in the flow direction. Although we could not reconstruct the potential profile within ion-depleted layers due to the resolution of the method, we found appreciable potential variation across the diluate channel. The most significant potential drops were localized on the membranes with the developed ion-depleted zones. Interestingly, these potential drops abruptly increased when we applied current loads, yielding almost complete desalination. The increase in the resistance accompanied by relatively large fluctuations in the measured potential indicated the system transition into limiting and overlimiting regions, and the onset of overlimiting convection.

Zobrazit více v PubMed

Strathmann H. Electrodialysis, a mature technology with a multitude of new applications. Desalination. 2010;264:268–288. doi: 10.1016/j.desal.2010.04.069. DOI

Strathmann H. Electromembrane Processes: Basic Aspects and Applications. Volume 2. Elsevier; Amsterdam, The Netherlands: 2010. pp. 391–429.

Bergsma F., Kruissink C.A. Fortschritte Der Hochpolymeren-Forschung. Springer; Berlin/Heidelberg, Germany: 1961. Ion-exchange membranes; pp. 307–362.

Helfferich F.G. Ion Exchange. McGraw-Hill; New York, NY, USA: 1962.

Nagarale R.K., Gohil G.S., Shahi V.K. Recent developments on ion-exchange membranes and electro-membrane processes. Adv. Colloid Interface Sci. 2006;119:97–130. doi: 10.1016/j.cis.2005.09.005. PubMed DOI

Strathmann H. Ion-Exchange Membrane Separation Processes. 1st ed. Elsevier; Amsterdam, The Netherlands: 2004. p. 348.

Nagasubramanian K., Chlanda F., Liu K.-J. Use of bipolar membranes for generation of acid and base—An engineering and economic analysis. J. Membr. Sci. 1977;2:109–124. doi: 10.1016/S0376-7388(00)83237-8. DOI

Belloň T., Polezhaev P., Vobecká L., Svoboda M., Slouka Z. Experimental observation of phenomena developing on ion-exchange systems during current-voltage curve measurement. J. Membr. Sci. 2019;572:607–618. doi: 10.1016/j.memsci.2018.11.037. DOI

Krol J.J., Wessling M., Strathmann H. Concentration polarization with monopolar ion exchange membranes: Current–voltage curves and water dissociation. J. Membr. Sci. 1999;162:145–154. doi: 10.1016/S0376-7388(99)00133-7. DOI

Tanaka Y. Concentration polarization in ion exchange membrane electrodialysis. J. Membr. Sci. 1991;57:217–235. doi: 10.1016/S0376-7388(00)80680-8. DOI

Slouka Z., Senapati S., Shah S., Lawler R., Shi Z., Stack M.S., Chang H.-C. Integrated, DC voltage-driven nucleic acid diagnostic platform for real sample analysis: Detection of oral cancer. Talanta. 2015;145:35–42. doi: 10.1016/j.talanta.2015.04.083. PubMed DOI PMC

Tanaka Y. Limiting current density of an ion-exchange membrane and of an electrodialyzer. J. Membr. Sci. 2005;266:6–17. doi: 10.1016/j.memsci.2005.05.005. DOI

Campione A., Gurreri L., Ciofalo M., Micale G., Tamburini A., Cipollina A. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications. Desalination. 2018;434:121–160. doi: 10.1016/j.desal.2017.12.044. DOI

Belova E.I., Lopatkova G.Y., Pismenskaya N.D., Nikonenko V.V., Larchet C., Pourcelly G. Effect of Anion-exchange Membrane Surface Properties on Mechanisms of Overlimiting Mass Transfer. J. Phys. Chem. B. 2006;110:13458–13469. doi: 10.1021/jp062433f. PubMed DOI

Belova E., Lopatkova G., Pismenskaya N., Nikonenko V., Larchet C. Role of water splitting in development of electroconvection in ion-exchange membrane systems. Desalination. 2006;199:59–61. doi: 10.1016/j.desal.2006.03.142. DOI

Choi J.-H., Kim S.-H., Moon S.-H. Heterogeneity of Ion-Exchange Membranes: The Effects of Membrane Heterogeneity on Transport Properties. J. Colloid Interface Sci. 2001;241:120–126. doi: 10.1006/jcis.2001.7710. PubMed DOI

Rubinstein I., Staude E., Kedem O. Role of the membrane surface in concentration polarization at ion-exchange membrane. Desalination. 1988;69:101–114. doi: 10.1016/0011-9164(88)80013-4. DOI

Slouka Z., Senapati S., Chang H.-C. Microfluidic Systems with Ion-Selective Membranes. Annu. Rev. Anal. Chem. 2014;7:317–335. doi: 10.1146/annurev-anchem-071213-020155. PubMed DOI

Rubinstein I., Maletzki F. Electroconvection at an electrically inhomogeneous permselective membrane surface. J. Chem. Soc. Faraday Trans. 1991;87:2079–2087. doi: 10.1039/ft9918702079. DOI

Rubinstein I., Zaltzman B. Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E. 2000;62:2238–2251. doi: 10.1103/PhysRevE.62.2238. PubMed DOI

Postler T., Slouka Z., Svoboda M., Pribyl M., Snita D. Parametrical studies of electroosmotic transport characteristics in submicrometer channels. J. Colloid Interface Sci. 2008;320:321–332. doi: 10.1016/j.jcis.2007.10.056. PubMed DOI

Druzgalski C.L., Andersen M.B., Mani A. Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface. Phys. Fluids. 2013;25:110804. doi: 10.1063/1.4818995. DOI

Slouka Z., Senapati S., Yan Y., Chang H.C. Charge inversion, water splitting, and vortex suppression due to DNA sorption on ion-selective membranes and their ion-current signatures. Langmuir. 2013;29:8275–8283. doi: 10.1021/la4007179. PubMed DOI

Kwak R., Guan G., Peng W.K., Han J. Microscale electrodialysis: Concentration profiling and vortex visualization. Desalination. 2013;308:138–146. doi: 10.1016/j.desal.2012.07.017. DOI

Belloň T., Slouka Z. Overlimiting convection at a heterogeneous cation-exchange membrane studied by particle image velocimetry. J. Membr. Sci. 2022;643:120048. doi: 10.1016/j.memsci.2021.120048. DOI

Rubinstein I., Zaltzman B. Extended space charge in concentration polarization. Adv. Colloid Interface Sci. 2010;159:117–129. doi: 10.1016/j.cis.2010.06.001. PubMed DOI

Nikonenko V., Kovalenko A., Urtenov M.K., Pismenskaya N., Han J., Sistat P., Pourcelly G. Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination. 2014;342:85–106. doi: 10.1016/j.desal.2014.01.008. DOI

de Valença J.C., Kurniawan A., Wagterveld R.M., Wood J.A., Lammertink R.G.H. Influence of Rayleigh-Bénard convection on electrokinetic instability in overlimiting current conditions. Phys. Rev. Fluids. 2017;2:033701. doi: 10.1103/PhysRevFluids.2.033701. DOI

Belloň T., Slouka Z. Overlimiting behavior of surface-modified heterogeneous anion-exchange membranes. J. Membr. Sci. 2020;610:118291. doi: 10.1016/j.memsci.2020.118291. DOI

Zabolotskii V.I., Bugakov V.V., Sharafan M.V., Chermit R.K. Transfer of electrolyte ions and water dissociation in anion-exchange membranes under intense current conditions. Russ. J. Electrochem. 2012;48:650–659. doi: 10.1134/S1023193512060158. DOI

Shaposhnik V.A., Vasil’eva V.I., Praslov D.B. Concentration fields of solutions under electrodialysis with ion-exchange membranes. J. Membr. Sci. 1995;101:23–30. doi: 10.1016/0376-7388(94)00270-9. DOI

Vasil’eva V.I., Shaposhnik V.A., Grigorchuk O.V., Petrunya I.P. The membrane–solution interface under high-performance current regimes of electrodialysis by means of laser interferometry. Desalination. 2006;192:408–414. doi: 10.1016/j.desal.2005.06.055. DOI

Manzanares J.A., Murphy W.D., Mafe S., Reiss H. Numerical simulation of the nonequilibrium diffuse double layer in ion-exchange membranes. J. Phys. Chem. 1993;97:8524–8530. doi: 10.1021/j100134a023. DOI

Moya A.A. A numerical comparison of optimal load and internal resistances in ion-exchange membrane systems under reverse electrodialysis conditions. Desalination. 2016;392:25–33. doi: 10.1016/j.desal.2016.04.016. DOI

Tedesco M., Hamelers H.V.M., Biesheuvel P.M. Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes. J. Membr. Sci. 2016;510:370–381. doi: 10.1016/j.memsci.2016.03.012. DOI

Belloň T., Slouka Z., Vobecká L., Polezhaev P. Fouling of a heterogeneous anion-exchange membrane and single anion-exchange resin particle by ssDNA manifests differently. J. Membr. Sci. 2018;572:619–631. doi: 10.1016/j.memsci.2018.11.034. DOI

Vobecká L., Belloň T., Slouka Z. Behavior of Embedded Cation-Exchange Particles in a DC Electric Field. Int. J. Mol. Sci. 2019;20:3579. doi: 10.3390/ijms20143579. PubMed DOI PMC

Nikonenko V.V., Pismenskaya N.D., Belova E.I., Sistat P., Huguet P., Pourcelly G., Larchet C. Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis. Adv. Colloid Interface Sci. 2010;160:101–123. doi: 10.1016/j.cis.2010.08.001. PubMed DOI

MEGA Product Data Sheet–RALEX® Membrane AMHPP. [(accessed on 1 October 2022)]. Available online: https://www.mega.cz/files/datasheet/MEGA-RALEX-AMH-PP-en.pdf.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...