Electric Potential Profiles in a Model Single-Path Electrodialysis Unit
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-21263S
Czech Science Foundation
PubMed
36422128
PubMed Central
PMC9696545
DOI
10.3390/membranes12111136
PII: membranes12111136
Knihovny.cz E-zdroje
- Klíčová slova
- desalination, diluate, electric potential, electrodialysis, overlimiting current,
- Publikační typ
- časopisecké články MeSH
Electrodialysis is an important electromembrane separation process anticipated to play a significant role in developing future technologies. It produces ion-depleted and ion-concentrated product streams, intrinsically suggesting the formation of spatial gradients of relevant quantities. These quantities affect local conditions in an electrodialysis unit. To investigate the spatial distribution of electric potentials, we constructed a model electrodialysis system with a single diluate channel that included ports for inserting reference electrodes measuring potential profiles. We validated our system and measurement methods in a series of control experiments under a solution flow rate of 250 µL/min and current densities between 10 and 52 A/m2. The collected data showed that the electric potential in the diluate channel did not change in the vertical direction (direction of gravity force), and only minimally varied in the diluate channel center in the flow direction. Although we could not reconstruct the potential profile within ion-depleted layers due to the resolution of the method, we found appreciable potential variation across the diluate channel. The most significant potential drops were localized on the membranes with the developed ion-depleted zones. Interestingly, these potential drops abruptly increased when we applied current loads, yielding almost complete desalination. The increase in the resistance accompanied by relatively large fluctuations in the measured potential indicated the system transition into limiting and overlimiting regions, and the onset of overlimiting convection.
Zobrazit více v PubMed
Strathmann H. Electrodialysis, a mature technology with a multitude of new applications. Desalination. 2010;264:268–288. doi: 10.1016/j.desal.2010.04.069. DOI
Strathmann H. Electromembrane Processes: Basic Aspects and Applications. Volume 2. Elsevier; Amsterdam, The Netherlands: 2010. pp. 391–429.
Bergsma F., Kruissink C.A. Fortschritte Der Hochpolymeren-Forschung. Springer; Berlin/Heidelberg, Germany: 1961. Ion-exchange membranes; pp. 307–362.
Helfferich F.G. Ion Exchange. McGraw-Hill; New York, NY, USA: 1962.
Nagarale R.K., Gohil G.S., Shahi V.K. Recent developments on ion-exchange membranes and electro-membrane processes. Adv. Colloid Interface Sci. 2006;119:97–130. doi: 10.1016/j.cis.2005.09.005. PubMed DOI
Strathmann H. Ion-Exchange Membrane Separation Processes. 1st ed. Elsevier; Amsterdam, The Netherlands: 2004. p. 348.
Nagasubramanian K., Chlanda F., Liu K.-J. Use of bipolar membranes for generation of acid and base—An engineering and economic analysis. J. Membr. Sci. 1977;2:109–124. doi: 10.1016/S0376-7388(00)83237-8. DOI
Belloň T., Polezhaev P., Vobecká L., Svoboda M., Slouka Z. Experimental observation of phenomena developing on ion-exchange systems during current-voltage curve measurement. J. Membr. Sci. 2019;572:607–618. doi: 10.1016/j.memsci.2018.11.037. DOI
Krol J.J., Wessling M., Strathmann H. Concentration polarization with monopolar ion exchange membranes: Current–voltage curves and water dissociation. J. Membr. Sci. 1999;162:145–154. doi: 10.1016/S0376-7388(99)00133-7. DOI
Tanaka Y. Concentration polarization in ion exchange membrane electrodialysis. J. Membr. Sci. 1991;57:217–235. doi: 10.1016/S0376-7388(00)80680-8. DOI
Slouka Z., Senapati S., Shah S., Lawler R., Shi Z., Stack M.S., Chang H.-C. Integrated, DC voltage-driven nucleic acid diagnostic platform for real sample analysis: Detection of oral cancer. Talanta. 2015;145:35–42. doi: 10.1016/j.talanta.2015.04.083. PubMed DOI PMC
Tanaka Y. Limiting current density of an ion-exchange membrane and of an electrodialyzer. J. Membr. Sci. 2005;266:6–17. doi: 10.1016/j.memsci.2005.05.005. DOI
Campione A., Gurreri L., Ciofalo M., Micale G., Tamburini A., Cipollina A. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications. Desalination. 2018;434:121–160. doi: 10.1016/j.desal.2017.12.044. DOI
Belova E.I., Lopatkova G.Y., Pismenskaya N.D., Nikonenko V.V., Larchet C., Pourcelly G. Effect of Anion-exchange Membrane Surface Properties on Mechanisms of Overlimiting Mass Transfer. J. Phys. Chem. B. 2006;110:13458–13469. doi: 10.1021/jp062433f. PubMed DOI
Belova E., Lopatkova G., Pismenskaya N., Nikonenko V., Larchet C. Role of water splitting in development of electroconvection in ion-exchange membrane systems. Desalination. 2006;199:59–61. doi: 10.1016/j.desal.2006.03.142. DOI
Choi J.-H., Kim S.-H., Moon S.-H. Heterogeneity of Ion-Exchange Membranes: The Effects of Membrane Heterogeneity on Transport Properties. J. Colloid Interface Sci. 2001;241:120–126. doi: 10.1006/jcis.2001.7710. PubMed DOI
Rubinstein I., Staude E., Kedem O. Role of the membrane surface in concentration polarization at ion-exchange membrane. Desalination. 1988;69:101–114. doi: 10.1016/0011-9164(88)80013-4. DOI
Slouka Z., Senapati S., Chang H.-C. Microfluidic Systems with Ion-Selective Membranes. Annu. Rev. Anal. Chem. 2014;7:317–335. doi: 10.1146/annurev-anchem-071213-020155. PubMed DOI
Rubinstein I., Maletzki F. Electroconvection at an electrically inhomogeneous permselective membrane surface. J. Chem. Soc. Faraday Trans. 1991;87:2079–2087. doi: 10.1039/ft9918702079. DOI
Rubinstein I., Zaltzman B. Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E. 2000;62:2238–2251. doi: 10.1103/PhysRevE.62.2238. PubMed DOI
Postler T., Slouka Z., Svoboda M., Pribyl M., Snita D. Parametrical studies of electroosmotic transport characteristics in submicrometer channels. J. Colloid Interface Sci. 2008;320:321–332. doi: 10.1016/j.jcis.2007.10.056. PubMed DOI
Druzgalski C.L., Andersen M.B., Mani A. Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface. Phys. Fluids. 2013;25:110804. doi: 10.1063/1.4818995. DOI
Slouka Z., Senapati S., Yan Y., Chang H.C. Charge inversion, water splitting, and vortex suppression due to DNA sorption on ion-selective membranes and their ion-current signatures. Langmuir. 2013;29:8275–8283. doi: 10.1021/la4007179. PubMed DOI
Kwak R., Guan G., Peng W.K., Han J. Microscale electrodialysis: Concentration profiling and vortex visualization. Desalination. 2013;308:138–146. doi: 10.1016/j.desal.2012.07.017. DOI
Belloň T., Slouka Z. Overlimiting convection at a heterogeneous cation-exchange membrane studied by particle image velocimetry. J. Membr. Sci. 2022;643:120048. doi: 10.1016/j.memsci.2021.120048. DOI
Rubinstein I., Zaltzman B. Extended space charge in concentration polarization. Adv. Colloid Interface Sci. 2010;159:117–129. doi: 10.1016/j.cis.2010.06.001. PubMed DOI
Nikonenko V., Kovalenko A., Urtenov M.K., Pismenskaya N., Han J., Sistat P., Pourcelly G. Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination. 2014;342:85–106. doi: 10.1016/j.desal.2014.01.008. DOI
de Valença J.C., Kurniawan A., Wagterveld R.M., Wood J.A., Lammertink R.G.H. Influence of Rayleigh-Bénard convection on electrokinetic instability in overlimiting current conditions. Phys. Rev. Fluids. 2017;2:033701. doi: 10.1103/PhysRevFluids.2.033701. DOI
Belloň T., Slouka Z. Overlimiting behavior of surface-modified heterogeneous anion-exchange membranes. J. Membr. Sci. 2020;610:118291. doi: 10.1016/j.memsci.2020.118291. DOI
Zabolotskii V.I., Bugakov V.V., Sharafan M.V., Chermit R.K. Transfer of electrolyte ions and water dissociation in anion-exchange membranes under intense current conditions. Russ. J. Electrochem. 2012;48:650–659. doi: 10.1134/S1023193512060158. DOI
Shaposhnik V.A., Vasil’eva V.I., Praslov D.B. Concentration fields of solutions under electrodialysis with ion-exchange membranes. J. Membr. Sci. 1995;101:23–30. doi: 10.1016/0376-7388(94)00270-9. DOI
Vasil’eva V.I., Shaposhnik V.A., Grigorchuk O.V., Petrunya I.P. The membrane–solution interface under high-performance current regimes of electrodialysis by means of laser interferometry. Desalination. 2006;192:408–414. doi: 10.1016/j.desal.2005.06.055. DOI
Manzanares J.A., Murphy W.D., Mafe S., Reiss H. Numerical simulation of the nonequilibrium diffuse double layer in ion-exchange membranes. J. Phys. Chem. 1993;97:8524–8530. doi: 10.1021/j100134a023. DOI
Moya A.A. A numerical comparison of optimal load and internal resistances in ion-exchange membrane systems under reverse electrodialysis conditions. Desalination. 2016;392:25–33. doi: 10.1016/j.desal.2016.04.016. DOI
Tedesco M., Hamelers H.V.M., Biesheuvel P.M. Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes. J. Membr. Sci. 2016;510:370–381. doi: 10.1016/j.memsci.2016.03.012. DOI
Belloň T., Slouka Z., Vobecká L., Polezhaev P. Fouling of a heterogeneous anion-exchange membrane and single anion-exchange resin particle by ssDNA manifests differently. J. Membr. Sci. 2018;572:619–631. doi: 10.1016/j.memsci.2018.11.034. DOI
Vobecká L., Belloň T., Slouka Z. Behavior of Embedded Cation-Exchange Particles in a DC Electric Field. Int. J. Mol. Sci. 2019;20:3579. doi: 10.3390/ijms20143579. PubMed DOI PMC
Nikonenko V.V., Pismenskaya N.D., Belova E.I., Sistat P., Huguet P., Pourcelly G., Larchet C. Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis. Adv. Colloid Interface Sci. 2010;160:101–123. doi: 10.1016/j.cis.2010.08.001. PubMed DOI
MEGA Product Data Sheet–RALEX® Membrane AMHPP. [(accessed on 1 October 2022)]. Available online: https://www.mega.cz/files/datasheet/MEGA-RALEX-AMH-PP-en.pdf.